Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw mat...Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.展开更多
A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results...A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe^2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe^2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.展开更多
AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and ...AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g.展开更多
The adsorption equilibrium of a fluoride solution on 1-2 mm granular activated alumina modified by Fe2(SO4)3 solution was investigated.The experiments were conducted using a wide range of initial fluoride concentratio...The adsorption equilibrium of a fluoride solution on 1-2 mm granular activated alumina modified by Fe2(SO4)3 solution was investigated.The experiments were conducted using a wide range of initial fluoride concentrations(0.5 to 180 mg·L-1 at pH~7.0) and an adsorbent dose of 1.0 g·L-1.The application of Langmuir and Freundlich adsorption isotherm models(linear and nonlinear forms) generally showed that a single Langmuir or Freundlich equation cannot fit the entire concentration gap.Experimental data on low equilibrium concentrations(0.1 to 5.0 mg·L-1) was in line with both Langmuir and Freundlich isotherm models,whereas that of high equilibrium concentrations(5.0 to 150 mg·L-1) was more in line with the Freundlich isotherm model.A new LangmuirFreundlich function was used for the entire concentration gap,as well as for low and high concentrations.展开更多
Fibrous activated alumina is widely applied in catalysts,adsorbents,and composite materials.This work presents a green approach in preparing the fibrous activated Al_(2)O_(3) with high purity and specific surface area...Fibrous activated alumina is widely applied in catalysts,adsorbents,and composite materials.This work presents a green approach in preparing the fibrous activated Al_(2)O_(3) with high purity and specific surface area through multistep phase transformation of aluminum-bearing substances using intermediate dawsonite as a template.Thermodynamic calculations and experimental results show that increasing the concentration of Na_(2)CO_(3) and(NH_(4))_(2)CO_(3) is remarkably beneficial to the formation of dawsonite and ammonium aluminum carbonate hydroxide,respectively.Based on determination of dissolution and precipitation mechanism,the ultrafine granular gibbsite is converted to the uniform fibrous dawsonite with a ratio of length to diameter over 50,and the fibrous dawsonite changes into the long fibrous ammonium aluminum carbonate hydroxide with a ratio of length to diameter is about 80 in above 70 g/L(NH_(4))_(2)CO_(3) solution.Furthermore,the activated alumina remains fibrous morphology after roasting ammonium aluminum carbonate hydroxide at a slow heating rate,plentiful open mesopore and weak aggregation of particles,which contributes to the high specific surface area of 159.37 m^(2)/g at 1273 K for the activated alumina.The complete transformation of dawsonite to ammonium aluminum carbonate hydroxide and high specific surface area contribute to the purity of the activated fibrous alumina above 99.9%with low Na and Fe content.展开更多
Fish oil is a rich source of polyunsaturated fatty acids,and its refinement has drawn attention for years.An appropriate adsorbent can effectively remove the pigment impurities in the fish oil.This study evaluated the...Fish oil is a rich source of polyunsaturated fatty acids,and its refinement has drawn attention for years.An appropriate adsorbent can effectively remove the pigment impurities in the fish oil.This study evaluated the impact of different absorbents on the reduction of oxidation products and color of anchovy oil during the decolorization under high vacuum.Using the single factor design,four process parameters including adsorbents type,adsorbent amount,temperature and time were tested to determine the optimum decolorization parameter.The results showed the optimum decolorization conditions were that the fish oil was treated with 8%acti-vated alumina at 80℃for 40 min.In the central group experiment,the addition amounts of mixed absorbents(activated earth and activated alumina),including the mass ratio of adsorbent in oil(5%-11%,w/w)and the mass ratio of activated earth in total absor-bent(20%-80%,w/w)were optimized to remove the oxidation products.Under the optimum condition at 10.18%of adsorbent and 70%of activated earth,the total oxidation value(TOTOX value)showed the minimum with the 44.4%of removal rate.Eight metal elements were analyzed in decolorized oil using inductively coupled plasma mass spectrometry(ICP-MS).The removal rates of Zn and Pb were 94.12%and 55.35%,respectively.The decolorization process using mixed absorbents under appropriate condition can significantly reduce the oxidation products and pigments in fish oil,which will benefit the industrial production of fish oil.展开更多
The chemical compositions of the sludge after treatment are tested by fully chemical analysis techniques. Its crystalline phase structure changes of the sludge calcined at different temperature are characterized by XR...The chemical compositions of the sludge after treatment are tested by fully chemical analysis techniques. Its crystalline phase structure changes of the sludge calcined at different temperature are characterized by XRD method. Nitrogen gas isothermal adsorption method (77 K) is applied to measure the influences of ammonium bicarbonate on specific surface area and pore structure of activated alumina synthesized from waste aluminum sludge. The result shows that the amount of Al2O3 in the sludge accounts for more than 94%, and Na2Owt% in a 0.1-0.2% range. By calcining raw sludge at 600℃, monophase γ-Al2O3 is obtained. And this can satisfy the performance requirements of activated alumina adsorbent. The specific surface area of the specimen with NH4HCO3 added has expanded from 179 to 249 m^2/g and the pore volume from 0.25 to 1.11 cm^3/g as well as the average pore diameter from 5.6 to 17.8 nm. All these show that NH4HCO3 is an effective pore-expansion agent to remarkably improve the structure and performance of activated alumina synthesized from waste aluminum sludge.展开更多
A new type of benzene adsorption material was prepared by using the airtight heat treatment method.This method can directly transform the organic impurities of the activated alumina waste into carbon with adsorption c...A new type of benzene adsorption material was prepared by using the airtight heat treatment method.This method can directly transform the organic impurities of the activated alumina waste into carbon with adsorption capability.The microstructure and carbon content of materials were characterized by scanning electron microscope(SEM),X-ray diffraction(XRD),BET(Brunauer Emmett Teller) surface area analysis and elemental analysis.The influences of heat treatment temperature on the properties of the composite materials were discussed.The benzene adsorption capability of the material was investigated.The experimental results show that the optimal heat treatment process condition is airtight heating at 400 ℃ for 2 h.The resulting sample has carbon mass fraction of 3.57%,specific surface area of 234.70 m 2 /g,pore volume of 0.41 m 3 /g,and average pore size of 6.59 nm.The samples show excellent benzene adsorption capability with an adsorption rate of 21.80%.展开更多
Lanthanum modified materials have been widely used for the removal of hazardous anions.In this study,in situ ATR-FTIR and two-dimensional correlation analysis were employed to investigate the adsorption mechanism of a...Lanthanum modified materials have been widely used for the removal of hazardous anions.In this study,in situ ATR-FTIR and two-dimensional correlation analysis were employed to investigate the adsorption mechanism of arsenate(As(V)) on lanthanum-impregnated activated alumina(LAA).Our results showed that electrostatic interaction attracted As(V) anions to the LAA surface,and then As(V) could form monodentate configuration on the LAA surface at pH 5-9.The result of 2D-COS showed that two coexistent adsorbed As(V) species,H2AsO4^- and HAsO4^2-,were adsorbed on the LAA surface without specific sequence at different pH conditions,indicating a negligible role of the incorporated protons of As(V) on the adsorption affinity to LAA surface.The results of this study reveal insights into LAA surface complexes on the molecular scale and provide theoretical support to new metal oxides design for efficient arsenic removal.展开更多
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key ResearchandDevelopment Project(231111230200).
文摘Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.
基金Project supported by the Technology Innovation Project of University (No. 705013)
文摘A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe^2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe^2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.
基金Sponsored by the special fund for 2010 Petty Invention and Petty Creation of Fujian Provincial Development and Reform Commission (No. MFGT[2010]1093)Natural Science Foundation of Fujian Province (No. 2011J01291)
文摘AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g.
基金Supported by the Major National Science and Technology Special Project on Treatment and Control of Water Pollution(2009ZX07425-006)the State Key laboratory of Environmental Simulation and Pollution Control (09K04ESPCT)
文摘The adsorption equilibrium of a fluoride solution on 1-2 mm granular activated alumina modified by Fe2(SO4)3 solution was investigated.The experiments were conducted using a wide range of initial fluoride concentrations(0.5 to 180 mg·L-1 at pH~7.0) and an adsorbent dose of 1.0 g·L-1.The application of Langmuir and Freundlich adsorption isotherm models(linear and nonlinear forms) generally showed that a single Langmuir or Freundlich equation cannot fit the entire concentration gap.Experimental data on low equilibrium concentrations(0.1 to 5.0 mg·L-1) was in line with both Langmuir and Freundlich isotherm models,whereas that of high equilibrium concentrations(5.0 to 150 mg·L-1) was more in line with the Freundlich isotherm model.A new LangmuirFreundlich function was used for the entire concentration gap,as well as for low and high concentrations.
基金Project(51874372)supported by the National Natural Science Foundation of China。
文摘Fibrous activated alumina is widely applied in catalysts,adsorbents,and composite materials.This work presents a green approach in preparing the fibrous activated Al_(2)O_(3) with high purity and specific surface area through multistep phase transformation of aluminum-bearing substances using intermediate dawsonite as a template.Thermodynamic calculations and experimental results show that increasing the concentration of Na_(2)CO_(3) and(NH_(4))_(2)CO_(3) is remarkably beneficial to the formation of dawsonite and ammonium aluminum carbonate hydroxide,respectively.Based on determination of dissolution and precipitation mechanism,the ultrafine granular gibbsite is converted to the uniform fibrous dawsonite with a ratio of length to diameter over 50,and the fibrous dawsonite changes into the long fibrous ammonium aluminum carbonate hydroxide with a ratio of length to diameter is about 80 in above 70 g/L(NH_(4))_(2)CO_(3) solution.Furthermore,the activated alumina remains fibrous morphology after roasting ammonium aluminum carbonate hydroxide at a slow heating rate,plentiful open mesopore and weak aggregation of particles,which contributes to the high specific surface area of 159.37 m^(2)/g at 1273 K for the activated alumina.The complete transformation of dawsonite to ammonium aluminum carbonate hydroxide and high specific surface area contribute to the purity of the activated fibrous alumina above 99.9%with low Na and Fe content.
基金This work was supported financially by the Ocean University of China,under the Classification of Project Number of 2018YFC0311201.
文摘Fish oil is a rich source of polyunsaturated fatty acids,and its refinement has drawn attention for years.An appropriate adsorbent can effectively remove the pigment impurities in the fish oil.This study evaluated the impact of different absorbents on the reduction of oxidation products and color of anchovy oil during the decolorization under high vacuum.Using the single factor design,four process parameters including adsorbents type,adsorbent amount,temperature and time were tested to determine the optimum decolorization parameter.The results showed the optimum decolorization conditions were that the fish oil was treated with 8%acti-vated alumina at 80℃for 40 min.In the central group experiment,the addition amounts of mixed absorbents(activated earth and activated alumina),including the mass ratio of adsorbent in oil(5%-11%,w/w)and the mass ratio of activated earth in total absor-bent(20%-80%,w/w)were optimized to remove the oxidation products.Under the optimum condition at 10.18%of adsorbent and 70%of activated earth,the total oxidation value(TOTOX value)showed the minimum with the 44.4%of removal rate.Eight metal elements were analyzed in decolorized oil using inductively coupled plasma mass spectrometry(ICP-MS).The removal rates of Zn and Pb were 94.12%and 55.35%,respectively.The decolorization process using mixed absorbents under appropriate condition can significantly reduce the oxidation products and pigments in fish oil,which will benefit the industrial production of fish oil.
文摘The chemical compositions of the sludge after treatment are tested by fully chemical analysis techniques. Its crystalline phase structure changes of the sludge calcined at different temperature are characterized by XRD method. Nitrogen gas isothermal adsorption method (77 K) is applied to measure the influences of ammonium bicarbonate on specific surface area and pore structure of activated alumina synthesized from waste aluminum sludge. The result shows that the amount of Al2O3 in the sludge accounts for more than 94%, and Na2Owt% in a 0.1-0.2% range. By calcining raw sludge at 600℃, monophase γ-Al2O3 is obtained. And this can satisfy the performance requirements of activated alumina adsorbent. The specific surface area of the specimen with NH4HCO3 added has expanded from 179 to 249 m^2/g and the pore volume from 0.25 to 1.11 cm^3/g as well as the average pore diameter from 5.6 to 17.8 nm. All these show that NH4HCO3 is an effective pore-expansion agent to remarkably improve the structure and performance of activated alumina synthesized from waste aluminum sludge.
基金the Special Fund for 2010 Petty Invention and Petty Creation of Fujian Provincial Development and Reform Commission(No.MFGT[2010]1093)the Natural Science Foundation of Fujian Province (No.2011J01291)
文摘A new type of benzene adsorption material was prepared by using the airtight heat treatment method.This method can directly transform the organic impurities of the activated alumina waste into carbon with adsorption capability.The microstructure and carbon content of materials were characterized by scanning electron microscope(SEM),X-ray diffraction(XRD),BET(Brunauer Emmett Teller) surface area analysis and elemental analysis.The influences of heat treatment temperature on the properties of the composite materials were discussed.The benzene adsorption capability of the material was investigated.The experimental results show that the optimal heat treatment process condition is airtight heating at 400 ℃ for 2 h.The resulting sample has carbon mass fraction of 3.57%,specific surface area of 234.70 m 2 /g,pore volume of 0.41 m 3 /g,and average pore size of 6.59 nm.The samples show excellent benzene adsorption capability with an adsorption rate of 21.80%.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB14020201)the National Basic Research Program of China(No. 2014CB441102)+1 种基金the National Natural Science Foundation of China(No.21477144)the Young Scientists Fund of RCEES, RCEES-QN-20130017F
文摘Lanthanum modified materials have been widely used for the removal of hazardous anions.In this study,in situ ATR-FTIR and two-dimensional correlation analysis were employed to investigate the adsorption mechanism of arsenate(As(V)) on lanthanum-impregnated activated alumina(LAA).Our results showed that electrostatic interaction attracted As(V) anions to the LAA surface,and then As(V) could form monodentate configuration on the LAA surface at pH 5-9.The result of 2D-COS showed that two coexistent adsorbed As(V) species,H2AsO4^- and HAsO4^2-,were adsorbed on the LAA surface without specific sequence at different pH conditions,indicating a negligible role of the incorporated protons of As(V) on the adsorption affinity to LAA surface.The results of this study reveal insights into LAA surface complexes on the molecular scale and provide theoretical support to new metal oxides design for efficient arsenic removal.