期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Promotion effect of adsorbed water/OH on the catalytic performance of Ag/activated carbon catalysts for CO preferential oxidation in excess H_2
1
作者 Yuanyuan Guo Limin Chen +2 位作者 Ding Ma Daiqi Ye Bichun Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期591-598,共8页
Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC cataly... Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC catalysts, after reduction in H2 at low temperatures (≤200 ℃) following heat treatment in He at 200 ℃ (He200H200), exhibited the best catalytic properties. Temperature-programmed desorption (TPD), X-ray diffraction (XRD) and temperature-programmed reduction (TPR) results indicated that silver oxides were produced during heat treatment in He at 200 ℃ which were reduced to metal silver nanoparticles in H2 at low temperatures (≤200 ℃), simultaneously generating the adsorbed water/OH. CO conversion was enhanced 40% after water treatment following heat treatment in He at 600 ℃. These results imply that the metal silver nanoparticles are the active species and the adsorbed water/OH has noticeable promotion effects on CO oxidation. However, the promotion effect is still limited compared to gold catalysts under the similar conditions, which may be the reason of low selectivity to CO oxidation in PROX over silver catalysts. The reported Ag/AC-S-He catalyst after He200H200 treatment displayed similar PROX of CO reaction properties to Ag/SiO2. This means that Ag/AC catalyst is also an efficient low-temperature CO oxidation catalyst. 展开更多
关键词 promotion effect adsorbed water/OH Ag/activated carbon (Ag/AC) catalysts CO preferential oxidation (PROX)
下载PDF
Preparation of Cyclodextrin-Based Carbonaceous Catalyst and Its Application in the Esterification
2
作者 单纯 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期455-458,共4页
A new carbonaceous catalyst with sulfonic acid group (-SO3H) was prepared by incomplete carbonization of β-cyclodextrin followed by sulfonation.The sulfonated amorphous carbon was characterized by IR,elemental anal... A new carbonaceous catalyst with sulfonic acid group (-SO3H) was prepared by incomplete carbonization of β-cyclodextrin followed by sulfonation.The sulfonated amorphous carbon was characterized by IR,elemental analysis,DSC-TGA and PXRD,and the catalytic activity was investigated to be an efficient catalyst for the esterification reactions with maximum yield of 87%.The sulfonated carbonaceous catalyst was readily separated from the reaction solution and keeps approximately equal catalytic activity.The results confirm that the active centre is the hydrophilic sulfonic acid functional group in the esterification reactions. 展开更多
关键词 β-Cyclodextrin carbonization carbonaceous catalyst esterification activity
下载PDF
Surface chemical characterization of deactivated low-level mercury catalysts for acetylene hydrochlorination 被引量:1
3
作者 Chao Liu Chenhui Liu +3 位作者 Jinhui Peng Libo Zhang Shixing Wang Aiyuan Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第2期364-372,共9页
Mercury-containing catalysts are widely used for acetylene hydrochlorination in China. Surface chemical characteristics of the fresh low-level mercury catalysts and spent low-level mercury catalysts were compared usin... Mercury-containing catalysts are widely used for acetylene hydrochlorination in China. Surface chemical characteristics of the fresh low-level mercury catalysts and spent low-level mercury catalysts were compared using multiple characterization methods. Pore blockage and active site coverage caused by chlorine-containing organics are responsible for catalyst deactivation. The reactions of chloroethylene and acetylene with chlorine free radical can generate chlorine-containing organic species. SiO_2 and functional groups on activated carbon contribute to the generation of carbon deposition. No significant reduction in the total content of mercury was observed after catalyst deactivation, while there was mercury loss locally. The irreversible loss of HgCl_2 caused by volatilization, reduction and poisoning of elements S and P also can lead to catalyst deactivation. Si, Al, Ca and Fe oxides are scattered on the activated carbon. Active components are still uniformly absorbed on activated carbon after catalyst deactivation. 展开更多
关键词 catalyst Activated carbon Deactivation Mercuric chloride Acetylene hydrochlorination carbon deposition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部