In this paper a new idea, based on discussing the essence of flutter, to investigate flutter problems is proposed that we only study a few modes of an aeroelastic system instead of studying the whole. In the light of ...In this paper a new idea, based on discussing the essence of flutter, to investigate flutter problems is proposed that we only study a few modes of an aeroelastic system instead of studying the whole. In the light of this, an approach to analysing flutter characteristics which combines the merit of graphic and analytic methods, is presented. Also an optimal cost function with clear physical meaning which can overcome some inherent drawbacks of linear quadratic technique, is developed. The paper has shown a numerical example of an elastic wing, in which some comparisons between the approach and 'V-G' method for calculating the critical point (Vf,wf ) are carried out as well.展开更多
Structural nonlinearities such as freeplay will affect the stability and even flight safety of the fin-actuator system.There is a lack of a practical method for designing Active Flutter Suppression (AFS) control laws ...Structural nonlinearities such as freeplay will affect the stability and even flight safety of the fin-actuator system.There is a lack of a practical method for designing Active Flutter Suppression (AFS) control laws for nonlinear fin-actuator systems.A design method for the AFS controller of the nonlinear all-movable fin-electromechanical actuator system is established by combining the inverse system and the Immersion and Invariance (I&I) theory.First,the composite control law combining the inverse system principle and internal model control is used to offset the nonlinearity and dynamics of the actuator,so that its driving torque can follow the ideal signal.Then,the ideal torque of the actuator is designed employing the I&I theory.The unfavorable oscillation of the fin is suppressed by making the output torque of the actuator track the ideal signal.The simulation results reveal that the proposed AFS method can increase the flutter speed of the nonlinear finactuator system with freeplay,and a set of controller parameters is also applicable for wider freeplay within a certain range.The power required for the actuator does not exceed the power that can be provided by the commonly used aviation actuator.This method can also resist a certain level of noise and external disturbance.展开更多
A modeling and control approach for an advanced configured large civil aircraft with aeroservoelasticity via the LQG method and control allocation is presented.Mathematical models and implementation issues for the mul...A modeling and control approach for an advanced configured large civil aircraft with aeroservoelasticity via the LQG method and control allocation is presented.Mathematical models and implementation issues for the multi-input/multi-output(MIMO) aeroservoelastic system simulation developed for a flexible wing with multi control surfaces are described.A fuzzy logic based optimization approach is employed to solve the constrained control allocation problem via intelligently adjusting the components of output vector and find a proper vector in the attainable moment set(AMS) autonomously.The basic idea is to minimize the L2 norm of error between the desired moment and achievable moment using the designing freedom provided by redundantly allocated actuators and control surfaces.Considering the constraints of control surfaces,in order to obtain acceptable performance of aircraft such as stability and maneuverability,the fuzzy weights are updated by the learning algorithm,which makes the closed-loop system self-adaptation.Finally,an application example of flight control designing for the advanced civil aircraft is discussed as a demonstration.The studies we have performed showed that the advanced configured large civil aircraft has good performance with the proper designed control law designed via the proposed approach.The gust alleviation and flutter suppression are applied with the synergetic effects of elevator,ailerons,equivalent rudders and flaps.The results show good closed loop performance and meet the requirement of constraint of control surfaces.展开更多
The calculation of accurate unsteady aerodynamic forces is critical in the analysis of aeroelastic problems,however the efficiency is low because of high computational costs of the computational fluid dynamics(CFD)por...The calculation of accurate unsteady aerodynamic forces is critical in the analysis of aeroelastic problems,however the efficiency is low because of high computational costs of the computational fluid dynamics(CFD)portion.Additionally,direct integrated CFD and computational structural dynamics(CSD)technique is unsuitable for the analysis of ASE and the flutter active suppression in state-space form.A reduced-order model(ROM)based on Volterra series was developed using CFD calculation and used to predict the flutter coupled with the structure.The closed-loop control systems designed by the sliding mode control(SMC)and linear quadratic Gaussian(LQG)control were constructed with ROM/CSD to suppress the AGARD 445.6wing flutter.The detailed implementation of the two control approaches is presented,and the flutter suppression effectiveness is discussed and compared.The results indicate that SMC method can make the controlled object response decay to the stable equilibrium more rapidly and has better control effects than the LQG control.展开更多
文摘In this paper a new idea, based on discussing the essence of flutter, to investigate flutter problems is proposed that we only study a few modes of an aeroelastic system instead of studying the whole. In the light of this, an approach to analysing flutter characteristics which combines the merit of graphic and analytic methods, is presented. Also an optimal cost function with clear physical meaning which can overcome some inherent drawbacks of linear quadratic technique, is developed. The paper has shown a numerical example of an elastic wing, in which some comparisons between the approach and 'V-G' method for calculating the critical point (Vf,wf ) are carried out as well.
文摘Structural nonlinearities such as freeplay will affect the stability and even flight safety of the fin-actuator system.There is a lack of a practical method for designing Active Flutter Suppression (AFS) control laws for nonlinear fin-actuator systems.A design method for the AFS controller of the nonlinear all-movable fin-electromechanical actuator system is established by combining the inverse system and the Immersion and Invariance (I&I) theory.First,the composite control law combining the inverse system principle and internal model control is used to offset the nonlinearity and dynamics of the actuator,so that its driving torque can follow the ideal signal.Then,the ideal torque of the actuator is designed employing the I&I theory.The unfavorable oscillation of the fin is suppressed by making the output torque of the actuator track the ideal signal.The simulation results reveal that the proposed AFS method can increase the flutter speed of the nonlinear finactuator system with freeplay,and a set of controller parameters is also applicable for wider freeplay within a certain range.The power required for the actuator does not exceed the power that can be provided by the commonly used aviation actuator.This method can also resist a certain level of noise and external disturbance.
基金supported by the National High Technology Research and Development Program of China (Grant Nos 2008AAJ114 and 2008AAJ201)Aviation Research Funding (Grant No 2007ZA28001)
文摘A modeling and control approach for an advanced configured large civil aircraft with aeroservoelasticity via the LQG method and control allocation is presented.Mathematical models and implementation issues for the multi-input/multi-output(MIMO) aeroservoelastic system simulation developed for a flexible wing with multi control surfaces are described.A fuzzy logic based optimization approach is employed to solve the constrained control allocation problem via intelligently adjusting the components of output vector and find a proper vector in the attainable moment set(AMS) autonomously.The basic idea is to minimize the L2 norm of error between the desired moment and achievable moment using the designing freedom provided by redundantly allocated actuators and control surfaces.Considering the constraints of control surfaces,in order to obtain acceptable performance of aircraft such as stability and maneuverability,the fuzzy weights are updated by the learning algorithm,which makes the closed-loop system self-adaptation.Finally,an application example of flight control designing for the advanced civil aircraft is discussed as a demonstration.The studies we have performed showed that the advanced configured large civil aircraft has good performance with the proper designed control law designed via the proposed approach.The gust alleviation and flutter suppression are applied with the synergetic effects of elevator,ailerons,equivalent rudders and flaps.The results show good closed loop performance and meet the requirement of constraint of control surfaces.
文摘The calculation of accurate unsteady aerodynamic forces is critical in the analysis of aeroelastic problems,however the efficiency is low because of high computational costs of the computational fluid dynamics(CFD)portion.Additionally,direct integrated CFD and computational structural dynamics(CSD)technique is unsuitable for the analysis of ASE and the flutter active suppression in state-space form.A reduced-order model(ROM)based on Volterra series was developed using CFD calculation and used to predict the flutter coupled with the structure.The closed-loop control systems designed by the sliding mode control(SMC)and linear quadratic Gaussian(LQG)control were constructed with ROM/CSD to suppress the AGARD 445.6wing flutter.The detailed implementation of the two control approaches is presented,and the flutter suppression effectiveness is discussed and compared.The results indicate that SMC method can make the controlled object response decay to the stable equilibrium more rapidly and has better control effects than the LQG control.