期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Alloying cobalt with ruthenium in nitrogen doped graphene layers for developing highly active hydrogen evolution electrocatalysts in alkaline media
1
《Science Foundation in China》 CAS 2017年第3期12-12,共1页
Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and H... Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and High Magnetic Field Laboratory,Hefei Institutes of Physical Science,Chinese Academy of 展开更多
关键词 Alloying cobalt with ruthenium in nitrogen doped graphene layers for developing highly active hydrogen evolution electrocatalysts in alkaline media
原文传递
Highly Active and Stable Ni_2P/SiO_2 Catalyst for Hydrogenation of C_9 Petroleum Resin 被引量:5
2
作者 Jiang Lin Feng Feng +2 位作者 Jiang Dahao Guan Zhengyu Li Xiaonian 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第1期36-43,共8页
Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reductio... Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst. 展开更多
关键词 Ni2P/SiO2 C9 petroleum resin catalytic hydrogenation high activity excellent stability
下载PDF
Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment 被引量:7
3
作者 Ali Jawad 陈朱琦 尹国川 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期810-825,共16页
The serious limitations of available technologies for decontamination of wastewater have compelled researchers to search for alternative solutions. Catalytic treatment with hydrogen peroxide, which appears to be one o... The serious limitations of available technologies for decontamination of wastewater have compelled researchers to search for alternative solutions. Catalytic treatment with hydrogen peroxide, which appears to be one of the most efficient treatment systems, is able to degrade various organics with the help of powerful ·OH radicals. This review focuses on recent progress in the use of bicarbonate activated hydrogen peroxide for wastewater treatment. The introduction of bicarbonate to pollutant treatment has led to appreciable improvements, not only in process efficiency, but also in process stability. This review describes in detail the applications of this process in homogeneous and heterogeneous systems. The enhanced degradation, limited or lack of leaching during heterogeneous degradation, and prolonged catalysts stability during degradation are salient features of this system. This review provides readers with new knowledge regarding bicarbonate, including the fact that it does not always harm pollutant degradation, and can significantly benefit degradation under some conditions. 展开更多
关键词 Wastewater treatment Bicarbonate activated hydrogen peroxide Catalyst leaching Pollutant degradation Catalytic oxidation
下载PDF
Catalytic Performance of Carbon Materials Supported Pd Nanoparticles in Selective Hydrogenation of Acetylene 被引量:2
4
作者 姚繁繁 霍羽佳 马运生 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第5期559-565,I0002,共8页
Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization met... Pd/C catalysts were prepared by deposited Pd nanoparticles (NPs) on different carbon supports including activated carbon (AC), graphite oxide (GO), and reduced graphite oxide (rGO) using sol-immobilization method. Through transmission electron microscopy, powder X-ray di raction, and X-ray photoelectron spectroscopy, the role of the carbon supports for the catalytic performances of Pd/C catalysts was examined in selective hydrogenation of acetylene. The results indicate that Pd/AC exhibited higher activity and selectivity than Pd/GO and Pd/rGO in the gas phase selective hydrogenation of acetylene. Thermal and chemical treatment of AC supports also have some effect on the catalytic performance of Pd/AC catalysts. The differences in the activity and selectivity of various Pd/C catalysts were partly attributed to the metal-support interaction. 展开更多
关键词 Selective hydrogenation of acetylene Pd active carbon Graphite oxide Reduced graphite oxide X-ray photoelectron spectroscopy
下载PDF
Acetylene hydrochlorination over supported ionic liquid phase(SILP)gold-based catalyst:Stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms 被引量:6
5
作者 Jia Zhao Saisai Wang +9 位作者 Bolin Wang Yuxue Yue Chunxiao Jin Jinyue Lu Zheng Fang Xiangxue Pang Feng Feng Lingling Guo Zhiyan Pan Xiaonian Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第2期334-346,共13页
The activation of HCl by cationic Au in the presence of C2H2 is important for the construction of active Au sites and in acetylene hydrochlorination.Here,we report a strategy for activating HCl by the Au-based support... The activation of HCl by cationic Au in the presence of C2H2 is important for the construction of active Au sites and in acetylene hydrochlorination.Here,we report a strategy for activating HCl by the Au-based supported ionic liquid phase(Au–SILP)technology with the[N(CN)2^–]anion.This strategy enables HCl to accept electrons from[N(CN)2^–]anions in Au–[N(CN)2^–]complexes rather than from pure[Bmim][N(CN)2],leading to notable improvement in both the reaction path and the stability of the catalyst without changing the reaction triggered by acetylene adsorption.Furthermore,the induction period of the Au–SILP catalyst was shown to be absent in the reaction process due to the high Au(III)content in the Au(Ⅲ)/Au(Ⅰ)site and the high substrate diffusion rate in the ionic liquid layer.This work provides a facile method to improve the stability of Au-based catalysts for acetylene hydrochlorination. 展开更多
关键词 Acetylene hydrochlorination Electron density hydrogen chloride activation Stabilization mechanism Gold-based supported ionic liquid phase catalyst
下载PDF
Determination of reactive oxygen generated from natural medicines and their antibacterial activity 被引量:8
6
作者 Noriko Tajima Makiko Takasaki +3 位作者 Haruka Fukamachi Takeshi Igarashi Yoshijiro Nakajima Hidetoshi Arakawa 《Journal of Pharmaceutical Analysis》 SCIE CAS 2016年第4期214-218,共5页
Extracts of 16 natural medicine powders {Galla chinensis,Malloti cortex,Cassiae semen,Sophorae radix,Myricae cortex,Crataegi fructus,Gambit,Mume fructus,Geranii herba,Phellodendri cortex,Coptidis rhizoma,Swertiae herb... Extracts of 16 natural medicine powders {Galla chinensis,Malloti cortex,Cassiae semen,Sophorae radix,Myricae cortex,Crataegi fructus,Gambit,Mume fructus,Geranii herba,Phellodendri cortex,Coptidis rhizoma,Swertiae herba,and Cinnamomi cortex) were assayed for reactive oxygen concentrations using the peroxyoxalate chemiluminescent detection system.High luminescence intensity was observed in Galla chinensis,Geranii herba,Malloti cortex,Myricae cortex,and Cinnamomi cortex.Additional experiments identified the reactive oxygen species as hydrogen peroxide.Galla chinensis generated 2.4 × 10^(-4) mol/L hydrogen peroxide from a 1 mg/mL solution.In bacterial growth tests,Galla chinensis extract had antibacterial activity against Escherichia coli.Staphylococcus aureus,Bacteroides thetaiotaomicron,Campylobacter sputorum biovar sputorum.Streptococcus salivarius thermophilus,Lactobacillus casei,and Bifidobacterium longum infantis.This antibacterial activity was decreased by the addition of catalase.It revealed that hydrogen peroxide which Galla chinensis produced participated in antibacterial activity. 展开更多
关键词 Galla Chinensis Natural medicines hydrogen peroxide Antibacterial activity
下载PDF
Taming Electrons in Pt/C Catalysts to Boost the Mesokinetics of Hydrogen Production 被引量:1
7
作者 Wenyao Chen Wenzhao Fu +6 位作者 Xuezhi Duan Bingxu Chen Gang Qian Rui Si Xinggui Zhou Weikang Yuan De Chen 《Engineering》 SCIE EI CAS 2022年第7期124-133,共10页
Taming the electron transfer across metal–support interfaces appears to be an attractive yet challenging methodology to boost catalytic properties.Herein,we demonstrate a precise engineering strategy for the carbon s... Taming the electron transfer across metal–support interfaces appears to be an attractive yet challenging methodology to boost catalytic properties.Herein,we demonstrate a precise engineering strategy for the carbon surface chemistry of Pt/C catalysts—that is,for the electron-withdrawing/donating oxygencontaining groups on the carbon surface—to fine-tune the electrons of the supported metal nanoparticles.Taking the ammonia borane hydrolysis as an example,a combination of density functional theory(DFT)calculations,advanced characterizations,and kinetics and isotopic analyses reveals quantifiable relationships among the carbon surface chemistry,Pt charge state and binding energy,activation entropy/enthalpy,and resultant catalytic activity.After decoupling the influences of other factors,the Pt charge is unprecedentedly identified as an experimentally measurable descriptor of the Pt active site,contributing to a 15-fold increment in the hydrogen generation rate.Further incorporating the Pt charge with the number of Pt active sites,a mesokinetics model is proposed for the first time that can individually quantify the contributions of the electronic and geometric properties to precisely predict the catalytic performance.Our results demonstrate a potentially groundbreaking methodology to design and manipulate metal–carbon catalysts with desirable properties. 展开更多
关键词 Mesokinetics model Catalyst descriptor Pt charge state Carbon surface chemistry hydrogen generation activity
下载PDF
An Investigation on Hydrogen Storage Kinetics of the Nanocrystalline and Amorphous LaMg12-type Alloys Synthesized by Mechanical Milling 被引量:2
8
作者 张羊换 WANG Jinglong +3 位作者 ZHANG Peilong ZHU Yongguo HOU Zhonghui SHANG Hongwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期278-287,共10页
Nanocrystalline and amorphous LaMg_(12)-type LaMg_(11)Ni + x wt% Ni(x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydroge... Nanocrystalline and amorphous LaMg_(12)-type LaMg_(11)Ni + x wt% Ni(x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydrogen storage kinetics of as-milled alloys were investigated systematically. The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galvanostatic system. And the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter(DSC) connected with a H_2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. It is found that the increase of Ni content significantly improves the gaseous and electrochemical hydrogen storage kinetic performances of as-milled alloys. Furthermore, as ball milling time changes, the maximum of both high rate discharge ability(HRD) and the gaseous hydriding rate of as-milled alloys can be obtained. But the hydrogen desorption kinetics of alloys always increases with the extending of milling time. Moreover, the improved gaseous hydrogen storage kinetics of alloys are ascribed to a decrease in the hydrogen desorption activation energy caused by increasing Ni content and milling time. 展开更多
关键词 LaMg12 alloy mechanical milling activation energy hydrogen storage kinetics
下载PDF
Cobalt nanoparticles encapsulated in nitrogen-doped carbon for room-temperature selective hydrogenation of nitroarenes
9
作者 Ruijie Gao Lun Pan +3 位作者 Zhengwen Li Xiangwen Zhang Li Wang Ji‐Jun Zou 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期664-672,共9页
Here,we report cobalt nanoparticles encapsulated in nitrogen‐doped carbon(Co@NC)that exhibit excellent catalytic activity and chemoselectivity for room‐temperature hydrogenation of nitroarenes.Co@NC was synthesized ... Here,we report cobalt nanoparticles encapsulated in nitrogen‐doped carbon(Co@NC)that exhibit excellent catalytic activity and chemoselectivity for room‐temperature hydrogenation of nitroarenes.Co@NC was synthesized by pyrolyzing a mixture of a cobalt salt,an inexpensive organic molecule,and carbon nitride.Using the Co@NC catalyst,a turnover frequency of^12.3 h?1 and selectivity for 4‐aminophenol of>99.9%were achieved for hydrogenation of 4‐nitrophenol at room temperature and 10 bar H2 pressure.The excellent catalytic performance can be attributed to the cooperative effect of hydrogen activation by electron‐deficient Co nanoparticles and energetically preferred adsorption of the nitro group of nitroarenes to electron‐rich N‐doped carbon.In addition,there is electron transfer from the Co nanoparticles to N‐doped carbon,which further enhances the functionality of the metal center and carbon support.The catalyst also exhibits stable recycling performance and high activity for nitroaromatics with various substituents. 展开更多
关键词 Cobalt nanoparticle Nitrogen‐doped carbon NITROARENES Selective hydrogenation hydrogen activation Heterogeneous catalysis
下载PDF
THE SYNTHESIS,HYDROGENATION ACTIVITY AND STRUCTURAL CHARACTERIZATION OF POLY-γ- (L-GLYCYLALANINE) PROPYL SILOXANE PALLADIUM CATALYSTS
10
作者 Chen Shihuang Liu Jiwan +1 位作者 You Jiang Zhang Xiaohui 《Wuhan University Journal of Natural Sciences》 CAS 1998年第1期91-91,共1页
This paper describes the synthesis of poly-γ-(L-glycylalanine) propylsiloxane palladium catalysts withdifferent N/Pd molar ratios and their catalytic activity. XPS data of the title catalyst indicated that the active... This paper describes the synthesis of poly-γ-(L-glycylalanine) propylsiloxane palladium catalysts withdifferent N/Pd molar ratios and their catalytic activity. XPS data of the title catalyst indicated that the active center may be complex compound composed of the -COOH and -NH2 of amino acid ligand and PdCl2. The hydrogenation activity of the title catalysts is very high for acrylonitrile,propenol and acrylic acid,but inactive for a-methyl acrylic acid and 1-decene. The influence of solvents,N/Pd molar tatio,and reaction temperature on catalytic hydrogenation of acrylonitrile was studied respectively. 展开更多
关键词 polymer catalyst amino acid hydrogenation activity
下载PDF
Solution-based Synthesis of Ni Sb Nanoparticles for Electrochemical Activity in Hydrogen Evolution Reaction
11
作者 Yin-yin Qian Jing Yang +2 位作者 Huan-ran Li Shi-qi Xing Qing Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第3期373-378,I0002,I0016-I0017,共9页
A cost-effective,facile solution-based hot-injection synthetic route has been developed to synthesize NiSb nanoparticles in oleylamine(OAm)using commercially available inexpensive precursor with reducing toxicity at a... A cost-effective,facile solution-based hot-injection synthetic route has been developed to synthesize NiSb nanoparticles in oleylamine(OAm)using commercially available inexpensive precursor with reducing toxicity at a relatively low temperature of 160℃.Especially,an organic reductant of borane-tert-butylamine complex is intentionally involved in the reaction system to promote a fast reduction of metallic Ni and Sb for the formation of the NiSb nanoparticles.Structural characterizations reveal that the NiSb nanoparticles are hexagonal phase with space group P63/mmc and they are composed of small granules with size about 10 nm that tend to form agglomerates with porous-like geometries.This is the first report on the generation of transition metal antimonide via solution-based strategy,and the asfabricated nanoparticles possess actively electrocatalytic hydrogen evolution reaction(HER)property in acidic electrolytes when the long-chain ligand of OAm adhered on the surface of the nanoparticles is exchanged by ligand-removal and exchange procedure.It is found that the NiSb nanoparticles as a new kind of non-noble-metal HER electrocatalysts only require overpotentials of 437 and 531 mV to achieve high current densities of 10 and 50 mA/cm^2 respectively,as well as exhibit low charge transfer resistance and excellent HER stability. 展开更多
关键词 Hot-injection synthetic route NiSb nanoparticles Ligand-removal and exchange hydrogen evolution reaction activity
下载PDF
Experimental Design Technique on Removal of Hydrogen Sulfide using CaO-eggshells Dispersed onto Palm Kernel Shell Activated Carbon:Experiment,Optimization,Equilibrium and Kinetic Studies
12
作者 OMAR Abed Habecb RAMESH Kanthasamy +1 位作者 GOMAA A. M. Ali ROSLI bin Mohd Yunus 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期305-320,共16页
This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface ... This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface methodology technique was used to optimize the process conditions and they were found to be: 500 mg/L for H2S initial concentration, 540 min for contact time and 1 g for adsorbent mass. The impacts of three arrangement factors(calcination temperature of impregnated activated carbon(IAC), the calcium solution concentration and contact time of calcination) on the H2S removal efficiency and impregnated AC yield were investigated. Both responses IAC yield(IACY, %) and removal efficiency(RE, %) were maximized to optimize the IAC preparation conditions. The optimum preparation conditions for IACY and RE were found as follows: calcination temperature of IAC of 880 ℃, calcium solution concentration of 49.3% and calcination contact time of 57.6 min, which resulted in 35.8% of IACY and 98.2% RE. In addition, the equilibrium and kinetics of the process were investigated. The adsorbent was characterized using TGA, XRD, FTIR, SEM/EDX, and BET. The maximum monolayer adsorption capacity was found to be 543.47 mg/g. The results recommended that the composite of PKSAC and Ca O could be a useful material for H2S containing wastewater treatment. 展开更多
关键词 water treatment hydrogen sulfide response surface methodology optimization activated carbon adsorption isotherm kinetics calcium oxide
下载PDF
Sequential reactant water management by complementary multisite catalysts for surpassing platinum hydrogen evolution activity
13
作者 Yu Lin Defang Ding +5 位作者 Shicheng Zhu Qunlei Wen Huangjingwei Li Zhen Li Youwen Liu Yi Shen 《Nano Research》 SCIE EI CSCD 2024年第3期1232-1241,共10页
Alkaline hydrogen evolution reaction(HER)offers a near-zero-emission approach to advance hydrogen energy.However,the activity limited by the multiple reaction steps involving H_(2)O molecules transfer,absorption,and a... Alkaline hydrogen evolution reaction(HER)offers a near-zero-emission approach to advance hydrogen energy.However,the activity limited by the multiple reaction steps involving H_(2)O molecules transfer,absorption,and activation still unqualified the thresholds of economic viability.Herein,we proposed a multisite complementary strategy that incorporates hydrophilic Mo and electrophilic V into Ni-based catalysts to divide the distinct steps on atomically dispersive sites and thus realize sequential regulation of the HER process.The Isotopic labeled in situ Raman spectroscopy describes 4-coordinated hydrogen bonded H_(2)O to be free H_(2)O passing the inner Helmholtz plane in the vicinity of the catalysts under the action of hydrophilic Mo sites.Furthermore,potential-dependent electrochemical impedance spectroscopy(EIS)reveals that electrophilic V sites with abundant 3d empty orbitals could activate the lone-pair electrons in the free H_(2)O molecules to produce more protic hydrogen,and dimerize into H_(2) at the Ni sites.By the sequential management of reactive H_(2)O molecules,NiMoV oxides multisite catalysts surpass Pt/C hydrogen evolution activity(49 mV@10 mA∙cm^(-2) over 140 h).Profoundly,this study provides a tangible model to deepen the comprehension of the catalyst–electrolyte interface and create efficient catalysts for diverse reactions. 展开更多
关键词 hydrogen evolution activity complementary multisite catalysts sequential reactive water management interfacial water molecules
原文传递
A Pincer Cobalt Complex as Catalyst with Dual Hydrogenation Activities for Hydrodeoxygenation of Ketones with H2 被引量:1
14
作者 Bingxue Liu Qiang Liu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第24期3528-3532,共5页
Reductive deoxygenation of ketones using H_(2) is a highly desirable but also challenging transformation in both chemical synthesis,industrial-scale petroleum and biomass feedstock reforming processes.Herein,we report... Reductive deoxygenation of ketones using H_(2) is a highly desirable but also challenging transformation in both chemical synthesis,industrial-scale petroleum and biomass feedstock reforming processes.Herein,we report a cooperative cobalt/Lewis acid (LA)-catalyzed hydrodeoxygenation of ketones using H_(2) as the reductant.In particular,the newly developed pincer cobalt catalyst possesses dual hydrogenation activities for both ketones and alkenes under the same reaction conditions.This reaction features a broad substrate scope,excellent functional-group compatibility,and potential applicability. 展开更多
关键词 Cobalt catalyst Lewis acids Homogeneous catalysis Dual hydrogenation activities HYDRODEOXYGENATION KETONES
原文传递
An Integrated Carbon Dioxide Capture and Methanation Process
15
作者 Xiaochen Zhang Mengzhu Li +21 位作者 Xingwu Liu Ang Li Yuchen Deng Mi Peng Yu Zhang Charlotte Vogt Matteo Monai Junxian Gao Xuetao Qin Yao Xu Qiaolin Yu Meng Wang Guofu Wang Zheng Jiang Xiaodong Han Casper Brady Wei-Xue Li Wu Zhou Jin-Xun Liu Bingjun Xu Bert M.Weckhuysen Ding Ma 《CCS Chemistry》 CSCD 2024年第5期1174-1183,共10页
Reducing the ever-growing level of CO_(2)in the atmosphere is critical for the sustainable development of human society in the context of global warming.Integration of the capture and upgrading of CO_(2)is,therefore,h... Reducing the ever-growing level of CO_(2)in the atmosphere is critical for the sustainable development of human society in the context of global warming.Integration of the capture and upgrading of CO_(2)is,therefore,highly desirable since each process step is costly,both energetically and economically.Here,we report a CO_(2)direct air capture(DAC)and fixation process that produces methane.Low concentrations of CO_(2)(∼400 ppm)in the air are captured by an aqueous solution of sodium hydroxide to form carbonate.The carbonate is subsequently hydrogenated to methane,which is easily separated from the reaction system,catalyzed by TiO2-supported Ru in the aqueous phase with a selectivity of 99.9%among gas-phase products.The concurrent regenerated hydroxide,in turn,increases the alkalinity of the aqueous solution for further CO_(2)capture,thereby enabling this one-ofits-kind continuous CO_(2)capture and methanation process.Engineering simulations demonstrate the energy feasibility of this CO_(2)DAC and methanation process,highlighting its promise for potential largescale applications. 展开更多
关键词 CO_(2)capture and methanation process sodium hydroxide CARBONATE Ru/TiO_(2) catalytic mechanism CO_(2)activation and hydrogenation
原文传递
Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays 被引量:10
16
作者 Dali Liu Chao Zhang +4 位作者 Yifu Yu Yanmei Shi Yu Yu Zhiqiang Niu Bin Zhang 《Nano Research》 SCIE EI CAS CSCD 2018年第2期603-613,共11页
The development of facile strategies to tune the oxygen vacancy (OV) content in transition metal oxides (TMOs) is paramount to obtain low-cost and stable electrocatalysts, but still highly challenging. Taking NiC0... The development of facile strategies to tune the oxygen vacancy (OV) content in transition metal oxides (TMOs) is paramount to obtain low-cost and stable electrocatalysts, but still highly challenging. Taking NiC0204 as a model system, we have experimentally established a facile calcination and electrochemical activation (EA) methodology to dramatically increase the concentration of OVs and provide theoretical insight into how the concentration of OVs affects the performance of spinel TMOs towards the electrochemical hydrogen evolution reaction (HER). A self-supported cathode of OV-rich NiC0204 nanowire arrays was found to exhibit higher HER activity and better stability in alkaline media than its counterparts with fewer OVs. The electrocatalytic HER activity was in good agreement with the increasing concentration of OVs in the studied samples. A large current density of 360 mA.cm-2 was reached with an overpotential of only 317 mV. Additionally, such a facile strategy was able to efficiently generate OVs in other TMOs (e.g., CoFe204 and NiFe204) for enhanced HER performance. In addition, our theoretical results suggest that the increasing OV concentration reduces the adsorption energy of water molecules and their dissociation energy barrier on the surface of the catalyst, thus leading to performance improvement of spinel TMOs toward the electrochemical HER. This work may open a new avenue to increase the concentration of OVs in TMOs in a controlled manner for promising applications in a variety of fields. 展开更多
关键词 electrochemical activation hydrogen evolutionreaction oxygen vacancy spinel phase thermal treatment
原文传递
Cu_(2)O-SupportedAtomicallyDispersed Pd Catalysts for Semihydrogenation of Terminal Alkynes: Critical Role of Oxide Supports 被引量:4
17
作者 Kunlong Liu Ruixuan Qin +7 位作者 Lingyun Zhou Pengxin Liu Qinghua Zhang Wentong Jing Pengpeng Ruan Lin Gu Gang Fu Nanfeng Zheng 《CCS Chemistry》 CAS 2019年第2期207-214,共8页
Atomically dispersed catalysts have demonstrated superior catalytic performance in many chemical transformations.However,limited success has been achieved in applying oxide-supported atomically dis-persed catalysts to... Atomically dispersed catalysts have demonstrated superior catalytic performance in many chemical transformations.However,limited success has been achieved in applying oxide-supported atomically dis-persed catalysts to semihydrogenation of alkynes under mild conditions. 展开更多
关键词 atomically dispersed catalyst support effect PALLADIUM SEMIhydrogenATION selective hydrogenation ALKYNES heterolytic activation of hydrogen galvanic displacement
原文传递
Hydrogen Storage Kinetics of Nanocrystalline and Amorphous LaMg_(12)-Type Alloy–Ni Composites Synthesized by Mechanical Milling 被引量:1
18
作者 Yanghuan Zhang Baowei Li +4 位作者 Huiping Ren Tai Yang Shihai Guo Yan Qi Dongliang Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第3期218-225,共8页
The nanocrystalline and amorphous LaMg11Ni + x wt% Ni (x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systemati... The nanocrystalline and amorphous LaMg11Ni + x wt% Ni (x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systematically investigated, The results indicate that the as-milled composites exhibit excellent hydrogen storage kinetic performances, and increasing Ni content significantly facilitates the improvement of the hydrogen storage kinetics properties of the composites. The gaseous and electrochemical hydrogen storage kinetics of the composites reaches a maximum value with the variation of milling time. Increasing Ni content and milling time both make the hydrogen desorption activation energy lower, which are responsible for the enhancement in the hydrogen storage kinetics properties of the composites. The diffusion coefficient of hydrogen atom and activation enthalpy of charge transfer on the surface of the as-milled composites were also calculated, which are considered to be the dominated factors for the electrochemical high rate discharge ability. 展开更多
关键词 LaMg12 alloy Mechanical milling Activation energy hydrogen storage kinetics
原文传递
Hydrogen storage thermodynamic and kinetic characteristics of PrMg12-type alloys synthesized by mechanical milling 被引量:1
19
作者 Jin-liang Gao Yan Qi +3 位作者 Ya-qin Li Hong-wei Shang Dong-liang Zhao Yang-huan Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第2期198-205,共8页
To improve the hydrogen storage performance of PrMg12-type alloys, Ni was adopted to replace partially Mg in the alloys. The PrMgllNi+x wt.% Ni (x=100, 200) alloys were prepared via mechanical milling. The phase st... To improve the hydrogen storage performance of PrMg12-type alloys, Ni was adopted to replace partially Mg in the alloys. The PrMgllNi+x wt.% Ni (x=100, 200) alloys were prepared via mechanical milling. The phase structures and morphology of the experimental alloys were in vestigated by X-ray diffraction and transmission electron microscopy. The results show that increasing milling time and Ni content accelerate the formation of nanocrystalline and amorphous structure. The gaseous hydrogen storage properties of the experimental alloys were determined by differential scanning calorimetry (DSC) and Sievert apparatus. In addition, increasing milling time makes the hydrogenation rates of the alloys augment firstly and decline subsequently and the dehydrogenation rate always increases. The maximum capacity is 5. 572 wt. % for the x = 100 alloy and 5. 829 wt. % for the x = 200 alloy, respectively. The enthalpy change ( △H ), entropy change (△S) and the dehydrogenation activation energy (Exde) markedly lower with increasing the milling time and the Ni content due to the generation of nanocrystalline and amorphous structure. 展开更多
关键词 PrMg12 alloy Mechanical milling Activation energy hydrogen storage dynamics Thermodynamics
原文传递
Hydrogen Storage Thermodynamics and Dynamics of Nd–Mg–NiBased Nd Mg_(12^-)Type Alloys Synthesized by Mechanical Milling 被引量:1
20
作者 Yang-Huan Zhang Ze-Ming Yuan +3 位作者 Wen-Gang Bu Feng Hu Ying Cai Dong-Liang Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第6期577-586,共10页
Nanocrystalline and amorphous Nd Mg_(12^-)type Nd Mg_(11)Ni+ x wt% Ni(x=100, 200) hydrogen storage alloys were synthesized by mechanical milling. The effects of Ni content and milling time on hydrogen storage t... Nanocrystalline and amorphous Nd Mg_(12^-)type Nd Mg_(11)Ni+ x wt% Ni(x=100, 200) hydrogen storage alloys were synthesized by mechanical milling. The effects of Ni content and milling time on hydrogen storage thermodynamics and dynamics of the alloys were systematically investigated. The gaseous hydrogen absorption and desorption properties were investigated by Sieverts apparatus and differential scanning calorimeter connected with a H_2 detector. Results show that increasing Ni content significantly improves hydrogen absorption and desorption kinetics of the alloys. Furthermore,varying milling time has an obvious effect on the hydrogen storage properties of the alloys. Hydrogen absorption saturation ratio(R^a_(10); a ratio of the hydrogen absorption capacity in 10 min to the saturated hydrogen absorption capacity) of the alloys obtains the maximum value with varying milling time. Hydrogen desorption ratio(R^d_(20), a ratio of the hydrogen desorption capacity in 20 min to the saturated hydrogen absorption capacity) of the alloys always increases with extending milling time. The improved hydrogen desorption kinetics of the alloys are considered to be ascribed to the decreased hydrogen desorption activation energy caused by increasing Ni content and milling time. 展开更多
关键词 NdMg12 alloy hydrogen storage Mechanical milling Activation energy Kinetics
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部