HPR1000 is an advanced nuclear power plant(NPP)with the significant feature of an active and passive safety design philosophy,developed by the China National Nuclear Corporation.On one hand,it is an evolutionary desig...HPR1000 is an advanced nuclear power plant(NPP)with the significant feature of an active and passive safety design philosophy,developed by the China National Nuclear Corporation.On one hand,it is an evolutionary design based on proven technology of the existing pressurized water reactor NPP;on the other hand,it incorporates advanced design features including a 177-fuel-assembly core loaded with CF3 fuel assemblies,active and passive safety systems,comprehensive severe accident prevention and mitigation measures,enhanced protection against external events,and improved emergency response capability.Extensive verification experiments and tests have been performed for critical innovative improvements on passive systems,the reactor core,and the main equipment.The design of HPR1000fulfills the international utility requirements for advanced light water reactors and the latest nuclear safety requirements,and addresses the safety issues relevant to the Fukushima accident.Along with its outstanding safety and economy,HPR1000 provides an excellent and practicable solution for both domestic and international nuclear power markets.展开更多
Biological treatment efficiency of six pharmaceutical compounds (acetazolamide, metronidazole, opipramol, piracetam, salicylamide and tinidazole) was evaluated using lab-scale Sequencing Batch Reactor (SBR). Compa...Biological treatment efficiency of six pharmaceutical compounds (acetazolamide, metronidazole, opipramol, piracetam, salicylamide and tinidazole) was evaluated using lab-scale Sequencing Batch Reactor (SBR). Comparative biological degradation processes of two types of activated sludge from municipal and pharmaceutical industry sewage treatment plants were examined. Three different organic loadings (0.05 g COD/g MLSS.d, 0.1 g COD/g MLSS.d and 0.2 g COD/g MLSS-d) and reaction time on the efficiency of Active Pharmaceutical Ingredient (API) decomposition were examined. Chemical oxygen demand, non-purgeable organic carbon as well as ammonium nitrogen contents were monitored by standard methods. Percentage of API decomposition was analysed by High Performance Liquid Chromatography (HPLC). The overall API removal efficiency was strictly dependent on the type of activated sludge origin. The main biodegradation products were identified using HPLC-MS,1H NMR and 13C NMR methods as e.g. ({4-[3-(5H-dibenzo[b,f]azepin-5-yl]piperazin-l-yl}methanamine) and (2-amino-1,3,4-thiadiazol-5-sulfonamide) for opipramol and acetazolamide respectively.展开更多
This study focused on As(V)removal by electrosorption in a self-made three-dimensional electrode reactor,in which granular activated carbon(GAC)was used as the particle electrode.Under the optimal conditions,the remov...This study focused on As(V)removal by electrosorption in a self-made three-dimensional electrode reactor,in which granular activated carbon(GAC)was used as the particle electrode.Under the optimal conditions,the removal efficiency of As(V)was 84%,and its residual concentration in solution was 0.08 mg/L.From kinetic investigation,the rate determining steps of the entire process may involve more than two processes:membrane diffusion,material diffusion and physical/chemical adsorption processes.During the desorption process,As(V)can be desorbed from GAC,and the GAC was able to electro-adsorb As(V)again after desorption,which means that the electrode has good cycling performance.展开更多
Activation analyses play a vital role in nuclear reactor design.Activation analyses,along with nuclear analyses,provide important information for nuclear safety and maintenance strategies.Activation analyses also help...Activation analyses play a vital role in nuclear reactor design.Activation analyses,along with nuclear analyses,provide important information for nuclear safety and maintenance strategies.Activation analyses also help in the selection of materials for a nuclear reactor,by providing the radioactivity and dose rate levels after irradiation.This information is important to help define maintenance activity for different parts of the reactor,and to plan decommissioning and radioactive waste disposal strategies.The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential,due to the presence of a highenergy neutron environment which makes decisive demands on material selection.This study comprises two parts; in the first part the activation characteristics,in a fusion radiation environment,of several elements which are widely present in structural materials,are studied.It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment.The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions.The structural materials selected for this study,i.e.India-specific Reduced Activation Ferritic-Martensitic steel(IN-RAFMS),P91-grade steel,stainless steel 316 LN ITER-grade(SS-316 LN-IG),stainless steel 316 L and stainless steel 304,are candidates for use in ITER either in vessel components or test blanket systems.Tungsten is also included in this study because of its use for ITER plasma-facing components.The study is carried out using the reference parameters of the ITER fusion reactor.The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port.The presence of elements like Nb,Mo,Co and Ta in a structural material enhance the activity level as well as the dose level,which has an impact on design considerations.IN-RAFMS was shown to be a more effective low-activation material than SS-316 LN-IG.展开更多
HZSM-5 coating using three colloidal silica binders, acidic colloidal silica (ACS), neutral colloidal silica (NCS) and basic colloidal silica (BCS), was prepared to study the effect of hinders on their adhesion ...HZSM-5 coating using three colloidal silica binders, acidic colloidal silica (ACS), neutral colloidal silica (NCS) and basic colloidal silica (BCS), was prepared to study the effect of hinders on their adhesion and catalytic activity. Scanning electron microscopy characterization indicated that the zeolite coating using BCS shows the smoothest surface with higher homogeneity and adherence strength. The specific surface area, relative crystallization and acid site strength of zeolites are also dependent on the binder used. Catalytic cracking of supercritical n- dodecane over the series of zeolite coating with various binders indicated that HZSM-5 coating with BCS exhibits the highest and the most stable catalytic activity compared with other kinds of binders, and also exhibits a stable catalytic activity ascribed to its proper acid property and microstructure.展开更多
Specific ATP content of volatile solids was measured to characterize the sludge activity in a sequential anaerobic/aerobic wastewater treatment system, with an upflow anaerobic sludge blanket (UASB) reactor and a thre...Specific ATP content of volatile solids was measured to characterize the sludge activity in a sequential anaerobic/aerobic wastewater treatment system, with an upflow anaerobic sludge blanket (UASB) reactor and a three-phase aerobic fluidized bed (AFB) reactor. The wastewater COD level was 2000-3000 mg/L in simulation of real textile wastewater. The ATP content and the specific ATP contents of volatile solids at different heights of the UASB reactor and those of the suspended and immobilized biomass in the AFB reactor were measured. In the UASB reactor, the maximum value of specific ATP (0.85 mg ATP/g VS) was obtained at a hydraulic retention time (HRT) 7.14 h in the blanket solution. In the AFB reactor, the specific ATP content of suspended biomass was higher than that of immobilized biomass and increased with hydraulic retention time reaching a maximum value of 1.6 mg ATP/g VS at hydraulic retention time 4.35 h. The ATP content of anaerobes in the UASB effluent declined rapidly under aerobic conditions following a 2nd-order kinetic model.展开更多
The activity concentration of natural and fallout radionuclides in the soil at some selected Thanas around the TRIGA Mark-II Research Reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka were measured ...The activity concentration of natural and fallout radionuclides in the soil at some selected Thanas around the TRIGA Mark-II Research Reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka were measured by using a high purity germanium detector (HPGe). The study revealed that only natural radionuclides were present in the samples and no trace of any artificial radionuclide was found. The average activity concentration of 238U, 232Th and 40K were found to be 37.8 ± 5.6 Bq.kg-1, 58.2 ± 11.0 Bq.kg-1 and 790.8 ± 153.4 Bq.kg-1 respectively. The radium equivalent activity (Req), absorbed dose rate (D), external radiation hazard index (Hex) and internal radiation hazard index (Hin) were also calculated to find out the probable radiological hazard of the natural radioactivity.展开更多
By combining sequencing batch reactor (SBR) activated sludge process and constructed wetland (CW), this study is to achieve the domestic wastewater treatment. Our purpose was to determine the optimum operating paramet...By combining sequencing batch reactor (SBR) activated sludge process and constructed wetland (CW), this study is to achieve the domestic wastewater treatment. Our purpose was to determine the optimum operating parameters of the combined process. The process involved advantages and shortages of SBR and CW. Under normal temperature, the 3rd cycle (SBR’s operation cycle is 8 h: inflow for 1 h, limited aeration for 3 h, sediment for 1 h, outflow for 1 h, and idling for 2 h; CW’s hydraulic retention time (HRT) is 24.8 h and hydraulic loading is 24.5 m3/m2 d) was the best cyclic mode. The effluents can meet the standard GB/T18921-2002: "The reuse of urban recycling water: water quality standard for scenic environment use". In the 3rd cycle, the efficiency of CW was the maximum, and energy consumption of SBR was the minimum. Under the condition of low dissolved oxygen, the removing efficiency of chemical oxygen demand (COD) and ammonia was not affected obviously. Simultaneously, nitrification and denitrification phenomena occured and phosphorus was absorbed obviously.展开更多
In order to improve poly-β-hydroxybutyrate(PHB) production in activated sludge, the anaerobic/aerobic alternative operating sequencing batch reactor(SBR) process was applied in this paper to accumulate PHB. Effec...In order to improve poly-β-hydroxybutyrate(PHB) production in activated sludge, the anaerobic/aerobic alternative operating sequencing batch reactor(SBR) process was applied in this paper to accumulate PHB. Effects of nutritional conditions and carbon concentration on PHB accumulation were studied. Results indicated that PHB accumulation reached the highest level and accounted for 11.2 % under anaerobic condition for phosphate limitation and 20.84 % under aerobic condition for nitrogen and phosphate limitation of mixed liquor suspended solid(MLSS), respectively. In addition, 4 g/L was proved to be the optimum carbon concentration in both anaerobic and aerobic experiments, and the PHB accumulation reached 17.1 %(anaerobic, phosphorus limitation) and 60.4 %(aerobic, nitrogen and phosphorus limitation) of MLSS, respectively. PHB could be successfully extracted with sodium hypochlorite and chloroform method from the activated sludge. In addition, the infrared spectrum showed that the PHB sample extracted was of high purity.展开更多
treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental ...treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady- state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m^3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m^3/(m^3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m^3·d), the COD removal efficiency decreased. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.展开更多
Molasses wastewater was evaluated as substrate for biohydrogen production by anaerobic fermentation in a novel continuous mixed attached growth reactor ( CMAGR ) with aeration pretreated sludge attached onto granular ...Molasses wastewater was evaluated as substrate for biohydrogen production by anaerobic fermentation in a novel continuous mixed attached growth reactor ( CMAGR ) with aeration pretreated sludge attached onto granular activated carbon under continuous flow condition.It was indicated that the CMAGR system was operated at the conditions of influent COD of 2000~6000mg / L , hydraulic retention time ( HRT ) of 6hand temperature of 35 ℃ , when the pH value and oxidation-reduction potential ( ORP ) ranged from 4.16and-434 mV respectively , stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 89.3%to the total liquid products after 40days operation.The H 2 content in biogas and chemical oxygen demand ( COD ) removal were estimated to be 46.6% and 13% , respectively.It was also investigated that the effects of organic loading rates ( OLRs ) on CMAGR hydrogen production system.It was found that hydrogen production yield increased from 3.72 mmol / hL to 12.51 mmol / hL as OLRs increased from 8 kg / m 3 d to 32 kg / m 3 d.The maximum hydrogen production rate of 12.51mmol / hL at a OLR of 32kg / m 3 d and the maximum hydrogen yield by substrate consumed was 130.57 mmol / mol happened at OLR of 16 kg / m 3 d.Greater pHs appeared to be favour to butyrate production and the maximum of 0.51mol / mol was obtained at pH of 4.14.However , ethanol / acetate ratio was greater than 1.1at pH fluctuated between 3.4 - 3.6and 4.1 - 4.4which indicated that these pHs were favour to ethanol type fermentation.Therefore , the continuous mixed attached growth reactor ( CMAGR ) could be a promising attached growth system for biohydrogen fermentation.展开更多
The reduced activation ferritic/martenstic steel CLF-1 prepared by the Southwestern Institute of Physics in China was irradiated by helium ions with an energy of 5 keV at room temperature using an electron cyclotron r...The reduced activation ferritic/martenstic steel CLF-1 prepared by the Southwestern Institute of Physics in China was irradiated by helium ions with an energy of 5 keV at room temperature using an electron cyclotron resonance (ECR) ion irradiation apparatus. After the irradiation, the helium retention and desorption were investigated using a technique of thermal desorption spectroscopy (TDS). The experiment was conducted with both the normal and welded samples. Blisters were observed after the helium ion irradiation, and the surface density of blisters in the welded samples was lower than that in the non-welded samples. Three desorption peaks were observed in both the non-welded and welded samples. These desorption peaks corresponded to those of blister ruptures and the helium release from the inner bubbles and the defects. The amount of helium retained in the welded samples was approximately the same as that in the non- welded samples, which was much less than other reduced activation materials, such as vanadium alloy and SiC/SiC composites.展开更多
Fischer-Tropsch synthesis (FTS) was carried out with an industrial iron-based catalyst (100Fe/5Cu/6K/16SiO2, by weight) under the baseline conditions in a stirred tank slurry reactor (STSR). The effects of activ...Fischer-Tropsch synthesis (FTS) was carried out with an industrial iron-based catalyst (100Fe/5Cu/6K/16SiO2, by weight) under the baseline conditions in a stirred tank slurry reactor (STSR). The effects of activation pressure on the catalyst activity and selectivity were investigated. It was found that iron phase compositions, textural properties, and FTS performances of the catalysts were strongly dependent on activation pressure. The high activation pressure retards the carburization. MФssbauer effect spectroscopy (MES) results indicated that the contents of the iron carbides clearly decrease with the increase of activation pressure, especially for the activation pressure increasing from 1.0 MPa to 1.5 MPa, and the reverse trend is observed for superparamagnetic Fe^3+ (spm). The higher content of Fe^3+ (spm) results in the higher amount of CO2 in tail gas when the catalyst is reduced at higher pressure. The catalyst activity decreases with the increase of activation pressure. The high quantity of iron carbides is necessary to obtain high FTS activity. However, the activity of the catalyst activated in syngas can not be predicted solely from the fraction of the carbides. It is concluded that activation with syngas at the lower pressure would be the most desirable for the better activity and stability on the iron-based catalyst.展开更多
The oxygen plasma reactor based on dielectric barrier discharge principle can produce a high concentration of reactive oxygen species,which can cooperate with hydraulic cavitation gas-liquid mixer to realize the appli...The oxygen plasma reactor based on dielectric barrier discharge principle can produce a high concentration of reactive oxygen species,which can cooperate with hydraulic cavitation gas-liquid mixer to realize the application of advanced oxidation technology in water treatment.In this technology,the work pressure of the oxygen plasma reactor is decreased by the vacuum suction effect generated in the snap-back section of the gas-liquid mixed container.In this paper,the characteristics of single micro-discharge at different pressures were investigated with the methods of discharge image,electrical characteristics and spectral diagnosis,in order to analyze the electrical characteristics and reactive oxygen species generation efficiency of oxygen plasma reactor at the pressure range from 60 kPa to 100 kPa.The study indicated that,when the pressure decreases,the duty ratio of ionization in the discharge gap and number of electrons with high energy increases,leading to a rise in reactive oxygen species production.When the oxygen reaches the maximum ionization,the concentration of reactive oxygen species is the highest.Then,the discharge intensity continues to increase,producing more heat,which will decompose the ozone and lower the production of reactive oxygen species.The oxygen plasma reactor has an optimum working pressure at different input powers,which makes the oxygen plasma reactor the most efficient in generating reactive oxygen species.展开更多
A flexible fibre biofilm reactor was developed for treatment of organic wastewaters.The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional ac...A flexible fibre biofilm reactor was developed for treatment of organic wastewaters.The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional activated sludge processes.Tracer experiments were performed to obtain the residence time distributions of the reactors.The results indicated that both reactors could be treated as mixed flow reactors.The effects of flow rates of water and air on the overall mass transfer coefficient of oxygen were investigated,and the correlations between the mass transfer coefficient and the ratio of flow rates were obtained.Compared to the conventional activated sludge reactor,the mass transfer coefficients in the flexible fibre reactor were similar to but slightly lower,and less sensitive to the variation in the ratio of flow rates.It indicated that the fibre packing in the reactor hindered the oxygen transfer to some extent.展开更多
A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC ...A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC fluidization could enhance COD removal by 22%-30%. In such a combined process, synergetic effects on PNP and COD removal was found, with their removal rate being enhanced by 137.8% and 97.8%, respectively. AC could be electrochemically regenerated and reused, indicating the combined process would be promising for treatment of biorefractory organic pollutants.展开更多
Element profiles of some beach rock samples collected from South East Coast of Tamilnadu, India have been determined using single comparator method of INAA. The geo-chemical behavior of the elements in the region is d...Element profiles of some beach rock samples collected from South East Coast of Tamilnadu, India have been determined using single comparator method of INAA. The geo-chemical behavior of the elements in the region is discussed. The irradiations were done at thermal neutron flux of ~ 1011 cm-2·s-1 at 20kW power using Kalpakkam Mini Reactor (KAMINI), IGCAR, Kalpakkam, Tamilnadu, India. Around 19 elements have been determined from 15 samples by high-resolution gamma spectrometry. The accuracy and precision were evaluated by assaying the irradiated Standard Reference Material (SRM 1646a Estuarine sediment) and were found to be in good agreement with certified values.展开更多
The history,the major achievements in both methodology and applications,the current trends and future perspectives of neutron activation analysis (NAA) in China are briefly described.
文摘HPR1000 is an advanced nuclear power plant(NPP)with the significant feature of an active and passive safety design philosophy,developed by the China National Nuclear Corporation.On one hand,it is an evolutionary design based on proven technology of the existing pressurized water reactor NPP;on the other hand,it incorporates advanced design features including a 177-fuel-assembly core loaded with CF3 fuel assemblies,active and passive safety systems,comprehensive severe accident prevention and mitigation measures,enhanced protection against external events,and improved emergency response capability.Extensive verification experiments and tests have been performed for critical innovative improvements on passive systems,the reactor core,and the main equipment.The design of HPR1000fulfills the international utility requirements for advanced light water reactors and the latest nuclear safety requirements,and addresses the safety issues relevant to the Fukushima accident.Along with its outstanding safety and economy,HPR1000 provides an excellent and practicable solution for both domestic and international nuclear power markets.
文摘Biological treatment efficiency of six pharmaceutical compounds (acetazolamide, metronidazole, opipramol, piracetam, salicylamide and tinidazole) was evaluated using lab-scale Sequencing Batch Reactor (SBR). Comparative biological degradation processes of two types of activated sludge from municipal and pharmaceutical industry sewage treatment plants were examined. Three different organic loadings (0.05 g COD/g MLSS.d, 0.1 g COD/g MLSS.d and 0.2 g COD/g MLSS-d) and reaction time on the efficiency of Active Pharmaceutical Ingredient (API) decomposition were examined. Chemical oxygen demand, non-purgeable organic carbon as well as ammonium nitrogen contents were monitored by standard methods. Percentage of API decomposition was analysed by High Performance Liquid Chromatography (HPLC). The overall API removal efficiency was strictly dependent on the type of activated sludge origin. The main biodegradation products were identified using HPLC-MS,1H NMR and 13C NMR methods as e.g. ({4-[3-(5H-dibenzo[b,f]azepin-5-yl]piperazin-l-yl}methanamine) and (2-amino-1,3,4-thiadiazol-5-sulfonamide) for opipramol and acetazolamide respectively.
基金financially supported by the National Natural Science Foundation of China (No. 52004256)the Shanxi Provincial Science Foundation for Youths, China (No. 201901D211212)+2 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (No. 2019L0574)the Young Academic Leader of North University of China (No. QX202004)the Postdoctoral Innovative Talent Support Program of Hunan Province, China (2021RC2010)
文摘This study focused on As(V)removal by electrosorption in a self-made three-dimensional electrode reactor,in which granular activated carbon(GAC)was used as the particle electrode.Under the optimal conditions,the removal efficiency of As(V)was 84%,and its residual concentration in solution was 0.08 mg/L.From kinetic investigation,the rate determining steps of the entire process may involve more than two processes:membrane diffusion,material diffusion and physical/chemical adsorption processes.During the desorption process,As(V)can be desorbed from GAC,and the GAC was able to electro-adsorb As(V)again after desorption,which means that the electrode has good cycling performance.
文摘Activation analyses play a vital role in nuclear reactor design.Activation analyses,along with nuclear analyses,provide important information for nuclear safety and maintenance strategies.Activation analyses also help in the selection of materials for a nuclear reactor,by providing the radioactivity and dose rate levels after irradiation.This information is important to help define maintenance activity for different parts of the reactor,and to plan decommissioning and radioactive waste disposal strategies.The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential,due to the presence of a highenergy neutron environment which makes decisive demands on material selection.This study comprises two parts; in the first part the activation characteristics,in a fusion radiation environment,of several elements which are widely present in structural materials,are studied.It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment.The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions.The structural materials selected for this study,i.e.India-specific Reduced Activation Ferritic-Martensitic steel(IN-RAFMS),P91-grade steel,stainless steel 316 LN ITER-grade(SS-316 LN-IG),stainless steel 316 L and stainless steel 304,are candidates for use in ITER either in vessel components or test blanket systems.Tungsten is also included in this study because of its use for ITER plasma-facing components.The study is carried out using the reference parameters of the ITER fusion reactor.The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port.The presence of elements like Nb,Mo,Co and Ta in a structural material enhance the activity level as well as the dose level,which has an impact on design considerations.IN-RAFMS was shown to be a more effective low-activation material than SS-316 LN-IG.
基金Supported by the National Natural Science Foundation of China(91116001)
文摘HZSM-5 coating using three colloidal silica binders, acidic colloidal silica (ACS), neutral colloidal silica (NCS) and basic colloidal silica (BCS), was prepared to study the effect of hinders on their adhesion and catalytic activity. Scanning electron microscopy characterization indicated that the zeolite coating using BCS shows the smoothest surface with higher homogeneity and adherence strength. The specific surface area, relative crystallization and acid site strength of zeolites are also dependent on the binder used. Catalytic cracking of supercritical n- dodecane over the series of zeolite coating with various binders indicated that HZSM-5 coating with BCS exhibits the highest and the most stable catalytic activity compared with other kinds of binders, and also exhibits a stable catalytic activity ascribed to its proper acid property and microstructure.
文摘Specific ATP content of volatile solids was measured to characterize the sludge activity in a sequential anaerobic/aerobic wastewater treatment system, with an upflow anaerobic sludge blanket (UASB) reactor and a three-phase aerobic fluidized bed (AFB) reactor. The wastewater COD level was 2000-3000 mg/L in simulation of real textile wastewater. The ATP content and the specific ATP contents of volatile solids at different heights of the UASB reactor and those of the suspended and immobilized biomass in the AFB reactor were measured. In the UASB reactor, the maximum value of specific ATP (0.85 mg ATP/g VS) was obtained at a hydraulic retention time (HRT) 7.14 h in the blanket solution. In the AFB reactor, the specific ATP content of suspended biomass was higher than that of immobilized biomass and increased with hydraulic retention time reaching a maximum value of 1.6 mg ATP/g VS at hydraulic retention time 4.35 h. The ATP content of anaerobes in the UASB effluent declined rapidly under aerobic conditions following a 2nd-order kinetic model.
文摘The activity concentration of natural and fallout radionuclides in the soil at some selected Thanas around the TRIGA Mark-II Research Reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka were measured by using a high purity germanium detector (HPGe). The study revealed that only natural radionuclides were present in the samples and no trace of any artificial radionuclide was found. The average activity concentration of 238U, 232Th and 40K were found to be 37.8 ± 5.6 Bq.kg-1, 58.2 ± 11.0 Bq.kg-1 and 790.8 ± 153.4 Bq.kg-1 respectively. The radium equivalent activity (Req), absorbed dose rate (D), external radiation hazard index (Hex) and internal radiation hazard index (Hin) were also calculated to find out the probable radiological hazard of the natural radioactivity.
基金Funded by Sustainable Water Management Improves Tomorrow’s City’s Health (SWITCH018530)
文摘By combining sequencing batch reactor (SBR) activated sludge process and constructed wetland (CW), this study is to achieve the domestic wastewater treatment. Our purpose was to determine the optimum operating parameters of the combined process. The process involved advantages and shortages of SBR and CW. Under normal temperature, the 3rd cycle (SBR’s operation cycle is 8 h: inflow for 1 h, limited aeration for 3 h, sediment for 1 h, outflow for 1 h, and idling for 2 h; CW’s hydraulic retention time (HRT) is 24.8 h and hydraulic loading is 24.5 m3/m2 d) was the best cyclic mode. The effluents can meet the standard GB/T18921-2002: "The reuse of urban recycling water: water quality standard for scenic environment use". In the 3rd cycle, the efficiency of CW was the maximum, and energy consumption of SBR was the minimum. Under the condition of low dissolved oxygen, the removing efficiency of chemical oxygen demand (COD) and ammonia was not affected obviously. Simultaneously, nitrification and denitrification phenomena occured and phosphorus was absorbed obviously.
基金Funded by the Fundamental Research Funds for the Central Universities(No.2572014CA23)the National Natural Science Foundation of China(No.51678120)
文摘In order to improve poly-β-hydroxybutyrate(PHB) production in activated sludge, the anaerobic/aerobic alternative operating sequencing batch reactor(SBR) process was applied in this paper to accumulate PHB. Effects of nutritional conditions and carbon concentration on PHB accumulation were studied. Results indicated that PHB accumulation reached the highest level and accounted for 11.2 % under anaerobic condition for phosphate limitation and 20.84 % under aerobic condition for nitrogen and phosphate limitation of mixed liquor suspended solid(MLSS), respectively. In addition, 4 g/L was proved to be the optimum carbon concentration in both anaerobic and aerobic experiments, and the PHB accumulation reached 17.1 %(anaerobic, phosphorus limitation) and 60.4 %(aerobic, nitrogen and phosphorus limitation) of MLSS, respectively. PHB could be successfully extracted with sodium hypochlorite and chloroform method from the activated sludge. In addition, the infrared spectrum showed that the PHB sample extracted was of high purity.
文摘treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady- state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m^3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m^3/(m^3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m^3·d), the COD removal efficiency decreased. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.
基金support from the National Hi-Tech R&D Program(863 Program)Ministry of Science & Technology,China(2006AA05Z109)+2 种基金Shanghai Science and Technology Bureau(071605122)Shanghai Education Committee(07ZZ156)GRAP09,Northeast Forestry University are gratefully acknowledged
文摘Molasses wastewater was evaluated as substrate for biohydrogen production by anaerobic fermentation in a novel continuous mixed attached growth reactor ( CMAGR ) with aeration pretreated sludge attached onto granular activated carbon under continuous flow condition.It was indicated that the CMAGR system was operated at the conditions of influent COD of 2000~6000mg / L , hydraulic retention time ( HRT ) of 6hand temperature of 35 ℃ , when the pH value and oxidation-reduction potential ( ORP ) ranged from 4.16and-434 mV respectively , stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 89.3%to the total liquid products after 40days operation.The H 2 content in biogas and chemical oxygen demand ( COD ) removal were estimated to be 46.6% and 13% , respectively.It was also investigated that the effects of organic loading rates ( OLRs ) on CMAGR hydrogen production system.It was found that hydrogen production yield increased from 3.72 mmol / hL to 12.51 mmol / hL as OLRs increased from 8 kg / m 3 d to 32 kg / m 3 d.The maximum hydrogen production rate of 12.51mmol / hL at a OLR of 32kg / m 3 d and the maximum hydrogen yield by substrate consumed was 130.57 mmol / mol happened at OLR of 16 kg / m 3 d.Greater pHs appeared to be favour to butyrate production and the maximum of 0.51mol / mol was obtained at pH of 4.14.However , ethanol / acetate ratio was greater than 1.1at pH fluctuated between 3.4 - 3.6and 4.1 - 4.4which indicated that these pHs were favour to ethanol type fermentation.Therefore , the continuous mixed attached growth reactor ( CMAGR ) could be a promising attached growth system for biohydrogen fermentation.
基金supported by National Natural Science Foundation of China (50701017)Japan-China Core University Program on Plasma and Nuclear Fusion
文摘The reduced activation ferritic/martenstic steel CLF-1 prepared by the Southwestern Institute of Physics in China was irradiated by helium ions with an energy of 5 keV at room temperature using an electron cyclotron resonance (ECR) ion irradiation apparatus. After the irradiation, the helium retention and desorption were investigated using a technique of thermal desorption spectroscopy (TDS). The experiment was conducted with both the normal and welded samples. Blisters were observed after the helium ion irradiation, and the surface density of blisters in the welded samples was lower than that in the non-welded samples. Three desorption peaks were observed in both the non-welded and welded samples. These desorption peaks corresponded to those of blister ruptures and the helium release from the inner bubbles and the defects. The amount of helium retained in the welded samples was approximately the same as that in the non- welded samples, which was much less than other reduced activation materials, such as vanadium alloy and SiC/SiC composites.
基金supported by the Foundation of China Postdoctoral Science Foundation (20080430734)
文摘Fischer-Tropsch synthesis (FTS) was carried out with an industrial iron-based catalyst (100Fe/5Cu/6K/16SiO2, by weight) under the baseline conditions in a stirred tank slurry reactor (STSR). The effects of activation pressure on the catalyst activity and selectivity were investigated. It was found that iron phase compositions, textural properties, and FTS performances of the catalysts were strongly dependent on activation pressure. The high activation pressure retards the carburization. MФssbauer effect spectroscopy (MES) results indicated that the contents of the iron carbides clearly decrease with the increase of activation pressure, especially for the activation pressure increasing from 1.0 MPa to 1.5 MPa, and the reverse trend is observed for superparamagnetic Fe^3+ (spm). The higher content of Fe^3+ (spm) results in the higher amount of CO2 in tail gas when the catalyst is reduced at higher pressure. The catalyst activity decreases with the increase of activation pressure. The high quantity of iron carbides is necessary to obtain high FTS activity. However, the activity of the catalyst activated in syngas can not be predicted solely from the fraction of the carbides. It is concluded that activation with syngas at the lower pressure would be the most desirable for the better activity and stability on the iron-based catalyst.
基金supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2013BAC06B02)Public Science and Technology Research Funds Projects of Ocean(No.201305027)+2 种基金National Natural Science Foundation of China(Nos.51877024,61427804,51309039)Liaoning Scientific Research Project of Department of Education of Liaoning Province(No.LZ2015007)High Level Talent Innovation Project of Dalian(No.2016RQ040)
文摘The oxygen plasma reactor based on dielectric barrier discharge principle can produce a high concentration of reactive oxygen species,which can cooperate with hydraulic cavitation gas-liquid mixer to realize the application of advanced oxidation technology in water treatment.In this technology,the work pressure of the oxygen plasma reactor is decreased by the vacuum suction effect generated in the snap-back section of the gas-liquid mixed container.In this paper,the characteristics of single micro-discharge at different pressures were investigated with the methods of discharge image,electrical characteristics and spectral diagnosis,in order to analyze the electrical characteristics and reactive oxygen species generation efficiency of oxygen plasma reactor at the pressure range from 60 kPa to 100 kPa.The study indicated that,when the pressure decreases,the duty ratio of ionization in the discharge gap and number of electrons with high energy increases,leading to a rise in reactive oxygen species production.When the oxygen reaches the maximum ionization,the concentration of reactive oxygen species is the highest.Then,the discharge intensity continues to increase,producing more heat,which will decompose the ozone and lower the production of reactive oxygen species.The oxygen plasma reactor has an optimum working pressure at different input powers,which makes the oxygen plasma reactor the most efficient in generating reactive oxygen species.
文摘A flexible fibre biofilm reactor was developed for treatment of organic wastewaters.The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional activated sludge processes.Tracer experiments were performed to obtain the residence time distributions of the reactors.The results indicated that both reactors could be treated as mixed flow reactors.The effects of flow rates of water and air on the overall mass transfer coefficient of oxygen were investigated,and the correlations between the mass transfer coefficient and the ratio of flow rates were obtained.Compared to the conventional activated sludge reactor,the mass transfer coefficients in the flexible fibre reactor were similar to but slightly lower,and less sensitive to the variation in the ratio of flow rates.It indicated that the fibre packing in the reactor hindered the oxygen transfer to some extent.
文摘A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC fluidization could enhance COD removal by 22%-30%. In such a combined process, synergetic effects on PNP and COD removal was found, with their removal rate being enhanced by 137.8% and 97.8%, respectively. AC could be electrochemically regenerated and reused, indicating the combined process would be promising for treatment of biorefractory organic pollutants.
文摘Element profiles of some beach rock samples collected from South East Coast of Tamilnadu, India have been determined using single comparator method of INAA. The geo-chemical behavior of the elements in the region is discussed. The irradiations were done at thermal neutron flux of ~ 1011 cm-2·s-1 at 20kW power using Kalpakkam Mini Reactor (KAMINI), IGCAR, Kalpakkam, Tamilnadu, India. Around 19 elements have been determined from 15 samples by high-resolution gamma spectrometry. The accuracy and precision were evaluated by assaying the irradiated Standard Reference Material (SRM 1646a Estuarine sediment) and were found to be in good agreement with certified values.
文摘The history,the major achievements in both methodology and applications,the current trends and future perspectives of neutron activation analysis (NAA) in China are briefly described.