It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s...It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems.展开更多
Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs freq...Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs frequently over forested soils. However, little is known about its impact on soil active organic carbon (SAOC), which is important to the global carbon cycle. To investigate this issue, we studied the active organic carbon in soils in the Larix gmelinii forests of the Da Xing'an Mountains (Greater Xing'an Mountains) in Northeastern China, which had been burned by high-intensity wildfire in two different years (2002 and 2008). Soil samples were collected monthly during the 2011 growing season from over 12 sample plots in burned and unburned soils and then analyzed to examine the dynamics of SAOC. Our results showed that active organic carbon content changed greatly after fire disturbance in relation to the amount of time elapsed since the fire. There were significant differences in microbial biomass carbon, dissolved organic carbon, light fraction organic carbon, particulate organic carbon between burned and unburned sample plots in 2002 and 2008 (p < 0.05). The correlations between active organic carbon and environmental factors such as water content, pH value and temperature of soils, and correlations between each carbon component changed after fire disturbance, also in relation to time since the fire. The seasonal dynamics of SAOC in all of the sample plots changed after fire disturbance; peak values appeared during the growing season. In plots burned in 2002 and 2008, the magnitude and occurrence time of peak values differed. Our findings provide basic data regarding the impact of fire disturbance on boreal forest soil-carbon cycling, carbon-balance mechanisms, and carbon contributions of forest ecosystem after wildfire disturbance.展开更多
It has been gradually acknowleged clinically to rescue organic phosphorus poisoning by using active carbon as Hemoperfusion (HP),Which is particularly better in rescuing the severely poisoned than other methods use.Ho...It has been gradually acknowleged clinically to rescue organic phosphorus poisoning by using active carbon as Hemoperfusion (HP),Which is particularly better in rescuing the severely poisoned than other methods use.However,during the practical treatment process,due to the organic phosphorus poisonings particularity of mechanism,variety of clinical symptoms,and urgency of rescue opportunity,it is of vital importance in higher rescuing success rate that the treater should possess a high sense of responsibility,great proficiency of operation skills,carefulness of observation and strictness of nursing.Our hospital has rescued 42 cases of severe organic phosphorus poisoning by active carbon HP from 1995 to October 1998,with good therapeutic effect.展开更多
The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy field was continuou...The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy field was continuously fertilized over 30 yr with nine different fertilizer treatments including N, P, K, NP, NK, NPK, 2NPK (two-fold NPK), NPK+manure (NPKM), and CK (no fertilization), N, 90 kg urea-N ha^-1 yr^-1; P, 45 kg triple superphosphate-P205 ha^-1 yr^-1; K, 75 kg potassium chloride-K20 ha^-1 yr^-1; and pig manure, 22 500 kg ha^-1 yr^-1. Soil samples were collected and determined for SOC, BC content, and enzyme activity. The results showed that the SOC in the NPKM treatment was significantly higher than those in the K, P, and CK treatments. The lowest SOC content was found in the CK treatment. SOC content was similar in the N, NP, NK, NPK, 2NPK, and NPKM treatments. There was no significant difference in BC content among different treatments. The BC-to-SOC ratios (BC/SOC) ranged from 0.50 to 0.63, suggesting that BC might originate from the same source. Regarding enzyme activity, NPK treatment had higher urease activity than NPKM treatment. The urease activity of NPKM treatment was significantly higher than that of 2NPK, NP, N, P, K, CK, and NPKM treatment which produced higher activities of acid phosphatase, catalase, and invertase than all other treatments. Our results indicated that long-term fertilization did not significantly affect BC content. Concurrent application of manure and mineral fertilizers increased SOC content and significantly enhanced soil enzyme activities. Correlation analysis showed that catalase activity was significantly associated with invertase activity, but SOC, BC, and enzyme activity levels were not significantly correlated with one another. No significant correlations were observed between BC and soil enzymes. It is unknown whether soil enzymes play a role in the decomposition of BC.展开更多
A general research program, focusing on activated carbon fiber cloths (ACFC) and felt for environmental protection was performed. The objectives were multiple: (i) a better understanding of the adsorption mecha- ...A general research program, focusing on activated carbon fiber cloths (ACFC) and felt for environmental protection was performed. The objectives were multiple: (i) a better understanding of the adsorption mecha- nisms of these kinds of materials; (ii) the specification and optimization of new processes using these adsorbents; (iii) the modeling of the adsorption of organic pollutants using both the usual and original approaches; (iv) applications of ACFC in industrial processes. The general question was: how can activated carbon fiber cloths and felts be used in air treatment processes for the protection of environment. In order to provide an answer, different approaches were adopted. The materials (ACFC) were characterized in terms of macro structure and internal porosity. Specific studies were performed to get the air flow pattern through the fabrics. Head loss data were generated and modeled as a fi.mction of air velocity. The performances of ACF to remove volatile organic compounds (VOCs) were approached with the adsorption isotherms and breakthrough curves in various operating conditions. Regenera- tion by Joule effect shows a homogenous heating of adsorber modules with rolled or pleated layers. Examples of industrial developments were presented showing an interesting technology for the removal of VOCs, such as dichloromethane, benzene, isopropyl alcohol and toluene, alone or in a complex mixture.展开更多
To investigate the influence of the activated carbon pore structure on the adsorption of volatile organic compounds (VOCs), three commercial activated carbon samples were chosen. The fixed-bed thermostatic adsorptio...To investigate the influence of the activated carbon pore structure on the adsorption of volatile organic compounds (VOCs), three commercial activated carbon samples were chosen. The fixed-bed thermostatic adsorption experiments were conducted under certain conditions, where toluene, acetone, and 1, 2-dichloroethane acted as adsorbents. Then, the incidence relation between the experimental results and the activated carbon pore structure was analyzed. After that, the results of the correlation analysis were verified in accordance with fractal theory and adsorption characteristic curve analysis. The results show that the pore diameter gradient is helpful for strengthening the intemal diffusion. Under the same condition, the adsorption of organic gases tends to be selective, and the positions of toluene, acetone and 1, 2-dichloroethane adsorbed on the activated carbon are mainly in the ranges of 1.27-1.49 nm, 0.67-0.84 nm and 1.39-1.75 nm, respectively. The relationship between adsorption capacity and activated carbon pore volume can accurately explain the spreading process of the adsorbents in the activated carbon.展开更多
The research on the adsorption equilibria,kinetics,and increase in process temperature of the volatile organic compound(VOC)adsorption in porous materials ensures safe production,thereby reducing production costs and ...The research on the adsorption equilibria,kinetics,and increase in process temperature of the volatile organic compound(VOC)adsorption in porous materials ensures safe production,thereby reducing production costs and improving separation efficiency.Therefore,it is critical in predicting the entire adsorption process based on minimal or no experimental input of the adsorbate and adsorbent.We discuss,in this review,the factors that affect the adsorption performance of VOCs in activated carbons,including the adsorption equilibrium,adsorption kinetics,and exotherm during adsorption.Subsequently,the existing prediction models are summarized and compared concerning the adsorption equilibrium,adsorption kinetics,and exothermic process of adsorption.We then propose a new prediction model based on intermolecular interaction and provide an outlook toward the design and manipulation of efficient adsorbents for the VOC system.展开更多
The application of organic soil amendments is a common practice for increasing soil fertility and soil organic carbon (SOC) content. In recent years, a new product from biogas production, biogas slurry is increasingly...The application of organic soil amendments is a common practice for increasing soil fertility and soil organic carbon (SOC) content. In recent years, a new product from biogas production, biogas slurry is increasingly applied to agricultural soils, although little is known about its effects on soil properties. In this study, the influence of this new product in comparison with liquid manure and sewage sludge on the organic carbon dynamics and enzyme activities were investigated in two different agricultural soils in short-term incubation studies. As a control, biologically inert sand was also amended with these organic wastes. In sand, biogas slurry degraded to 10.4% within 14 days, while no differences were found between the degradability of liquid manure and sewage sludge with 6.6% and 5.4%, respectively. However, although the degradability of biogas slurry was highest among the organic amendments, liquid manure application resulted in the highest respiration rates in the soil samples. This was likely due to the organic waste borne easily decomposable substrates which were most dominant in liquid manure. Organic waste applications were found to generally increase the activity of numerous enzymes but did not change the soil enzyme patterns. Thus, in general it was shown that the microbial population of the organic wastes will not become prominent when introduced with the manures to soils. Thus, an inoculation with organic waste borne microorganisms could likely be neglected when discussing the extent of organic carbon dynamics after organic waste application to agricultural soils.展开更多
A bentonite-humic acid(B-HA) mixture added to degraded soils may improve soil physical and hydraulic properties, due to effects such as improved soil structure and increased water and nutrient retention, but its effec...A bentonite-humic acid(B-HA) mixture added to degraded soils may improve soil physical and hydraulic properties, due to effects such as improved soil structure and increased water and nutrient retention, but its effect on soil physicochemical and biological properties, and grain quality is largely unknown. The effect of B-HA, added at 30 Mg ha^(-1), was studied at 1,3, 5 and 7 years after its addition to a degraded sandy soil in a semi-arid region of China. The addition of B-HA significantly increased water-filled pore space and soil organic carbon, especially at 3 to 5 years after its soil addition to the soil. Amending the sandy soil with B-HA also increased the content of microbial biomass(MB)-carbon,-nitrogen and-phosphorus, and the activities of urease, invertase, catalase and alkaline phosphatase. The significant effect of maize(Zea mays L.) growth stage on soil MB and enzyme activities accounted for 58 and 84% of their total variation, respectively. In comparison, B-HA accounted for 8% of the total variability for each of the same two variables. B-HA significantly enhanced soil properties and the uptake of N and P by maize in semi-arid areas. The use of B-HA product would be an effective management strategy to reclaim degraded sandy soils and foster sustainable agriculture production in northeast China and regions of the world with similar soils and climate.展开更多
An activated carbon pore-expanding technique was achieved through innovative reactivation by CO_2/microwave.The original and modified activated carbons were characterized by nitrogen adsorption–desorption,scanning el...An activated carbon pore-expanding technique was achieved through innovative reactivation by CO_2/microwave.The original and modified activated carbons were characterized by nitrogen adsorption–desorption,scanning electron microscopy,transmission electron microcopy,and Fourier transform infrared spectroscopy.The mesopore volume increased from 0.122 cm^3·g^(-1) to 0.270 cm^3·g^(-1),and a hierarchical pore structure was formed.A gradual decrease in the phenolic hydroxyl and carboxyl groups on the surface of activated carbon enhanced the surface inertia of granular activated carbon(GAC).The toluene desorption rate of the modified sample increased by 8.81% compared with that of the original GAC.Adsorption isotherm fittings revealed that the Langmuir model was applicable for the original and modified activated carbons.The isosteric adsorption heat of toluene on the activated carbon decreased by approximately 50%,which endowed the modified sample with excellent stability in application.The modified samples showed an enhanced desorption performance of toluene,thereby opening a way to extend the cycle life and improve the economic performance of carbon adsorbent in practical engineering applications.展开更多
Mangrove degradation must reduce carbon sequestration in recent years, thereby aggravating global warming.Thus, short-term impacts of human activity on mangrove ecosystems are cause for concern from local governments ...Mangrove degradation must reduce carbon sequestration in recent years, thereby aggravating global warming.Thus, short-term impacts of human activity on mangrove ecosystems are cause for concern from local governments and scientists. Mangroves sediments can provide detailed records of mangrove species variation in the last one hundred years, based on detailed 210 Pb data. The study traced the history of mangrove development and its response to environmental change over the last 140 years in two mangrove swamps of Guangxi, Southwest China. Average sedimentation rates were calculated to be 0.48 cm/a and 0.56 cm/a in the Yingluo Bay and the Maowei Sea, respectively. Chemical indicators(δ13Corg and C:N) were utilized to trace the contribution of mangrove-derived organic matter(MOM) using a ternary mixing model. Simultaneous use of mangrove pollen can help to supplement some of these limitations in diagenetic/overlap of isotopic signatures. We found that vertical distribution of MOM was consistent with mangrove pollen, which could provide similar information for tracing mangrove ecosystems. Therefore, mangrove development was reconstructed and divided into three stages: flourishing, degradation and re-flourishing/re-degradation period. The significant degradation, found in the period of 1968–1998 and 1907–2007 in the Yingluo Bay and the Maowei Sea, respectively, corresponding to a rapid increase of reclamation area and seawall length, rather than climate change as recorded in the region.展开更多
Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied usin...Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied using cyclostratigraphic and geochemical methods.d13 C and chemical index of alteration(CIA)were used to filter the astronomical orbit parameters recorded in sediments.It is found that the climate change driven by orbital cycle controls the fluctuations of sea level at different scales,obliquity forcing climate changes drive thermohaline circulation(THC)of the ocean,and THC-induced bottom currents transport nutrient-laden water from high latitude regions to the surface water of low-latitude area.Hence,THC is the main dynamic mechanism of organic-carbon supply.The marine productivity indexes of Ba/Al and Ni/Al indicate that volcanic activities had limited effect on marine productivity but had great influences on organic carbon preservation efficiency in late Hirnantian(E4).Paleo-ocean redox environmental indicators Th/U,V/Cr and V/(V+Ni)show that there is a significant correlation between volcanism and oxygen content in Paleo-ocean,so it is inferred that volcanisms controlled the organic carbon preservation efficiency by regulating oxygen content in Paleo-ocean,and the difference in volcanism intensity in different areas is an important factor for the differential preservation efficiency of organic carbon.The organic carbon input driven by orbital cycle and the preservation efficiency affected by volcanisms worked together to control the enrichment of organic carbon in the Middle–Upper Yangtze region.展开更多
Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and ...Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples.During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57-17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.展开更多
The effects of peptides,amino acids and organic bases as an axial ligand on reaction ac- tivities in the electrocarboxylation of benzyl chloride with CO_2 catalyzed by CoTPP are reported. The imidazole organic base,pe...The effects of peptides,amino acids and organic bases as an axial ligand on reaction ac- tivities in the electrocarboxylation of benzyl chloride with CO_2 catalyzed by CoTPP are reported. The imidazole organic base,peptide containing —SH and amino acid containing imidazolyl en- hance the catalytic activity.The effect of imidazole amounts on the catalytic activity of CoTPP is studied.展开更多
The dynamic competitive adsorption behaviors of different binary organic vapor mixtures on ACF-Ps under different operation conditions were investigated by gas chromatography in this paper. The studied mixtures includ...The dynamic competitive adsorption behaviors of different binary organic vapor mixtures on ACF-Ps under different operation conditions were investigated by gas chromatography in this paper. The studied mixtures included benzene/toluene, toluene/xylene, benzene/isopropylbenzene, ethyl acetate/toluene and benzene/ethyl acetate. Experimental results show that various ACF-Ps, as with ACF-W, can remove both vapors in binary vapor mixtures with over 99% of removal efficiency before the breakthrough point of the more weakly adsorbed vapor. In dynamic competitive adsorption, the more weakly adsorbed vapor not only penetrates early, but also will be displaced and desorbed consequently by stronger adsorbate and therefore produces a rolling up in the breakthrough curve. The ACF-Ps prepared at different temperatures have somewhat different adsorption selectivity. The feed concentration ratio of vapors, the length/diameter ratio and the thick of bed have effect on competitive adsorption. The competitive adsorption ability of a vapor is mainly related to its boiling point. Usually, the higher the boiling point, the stronger the vapor adsorbed on ACF-P.展开更多
Organic chelating reagent influences upon the redox adsorption of activated carbon fiber towards Au3+ were systematically investigated. The experimental results indicated that the presence of organic chelating reagent...Organic chelating reagent influences upon the redox adsorption of activated carbon fiber towards Au3+ were systematically investigated. The experimental results indicated that the presence of organic chelating reagent on activated carbon fiber strongly affects adsorption capacity of activated carbon fiber towards Au3+. The reduction-adsorption amount of Au3+ increased three times by the presence of 8-quinolinol. Furthermore, The reduction-adsorption amount of Au3+ depended on the pH value of adsorption and temperature.展开更多
[Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbo...[Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbon and soil carbon management index(CMI)of different land use types in Guilin Maocun karst area were studied.Sampling with field investigation and laboratory testing was carried out.Heavy potassium chromate method was adopted to determine soil organic matter.333 mmol/L KMnO4 oxidation method was used to determine active organic carbon.[Result]With active soil organic matter increasing,the differences of CMI between different land use types were bigger.The CMI value of different land uses was shrubforest paddy fielddry farmland.The statistical analysis showed that labile organic matter was related with major soil properties at a significant level.[Conclusion]Labile organic matter could be used to reveal the influence of different land use types on soil organic matter and carbon management index in karst area.展开更多
The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils ...The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils derived from Changbai and Qilian Mountain areas. By analyzing and fitting the CO2 evolved rates with SOC mineralization, the results showed that active carbon pools accounted tor 1.0% to 8.5% of SOC with an average of mean resistant times (MRTs) for 24 days, and slow carbon pools accounted for 91% to 99% of SOC with an average of MRTs for 179 years. The sizes and MRTs of slow carbon pools showed that SOC in Qilian Mountain sites was more difficult to decompose than that in Changbai Mountain sites. By analyzing the effects of temperature, soil clay content and elevation on SOC mineralization, results indicated that mineralization of SOC was directly related to temperature and that content of accumulated SOC and size of slow carbon pools from Changbai Mountain and Qilian Mountain sites increased linearly with increasing clay content, respectively, which showed temperature and clay content could make greater effect on mineralization of SOC.展开更多
Long-term changes of composition, sources and burial fluxes of TOC (total organic carbon) in sediments of the central Yellow Sea mud area and their possible affecting factors are discussed in this paper. Firstly, si...Long-term changes of composition, sources and burial fluxes of TOC (total organic carbon) in sediments of the central Yellow Sea mud area and their possible affecting factors are discussed in this paper. Firstly, similarity analysis is employed to confirm that the carbon burial features resulted from two collected cores are typical in the central Yellow Sea mud area where YSWC (Yellow Sea Warm Current) is prevalent. On this basis, the burial flux of TOC here was considered to be 235.5-488.4 pmol/(cm^2.a) since the first industrial revolution, accounting for about 70%-90% among burial fluxes of TC (total carbon) in the sediments. Compared TOC/TC ratio in the two cores with that in other marine sediments worldwide, we suggest that the growth of calcareous/non-calcareous organisms and dissolution of IC (inorganic carbon) are important factors controlling the TOC/TC ratio in sediment. Results of two-end mixed model based on fi13C data indicate that marine-derived organic carbon (OCa) is the main part among total burial organic carbon which accounts for a ratio over 85%. Due to the high TOC/TC ratio in the two cores, TC in the sediments also mainly exists as OCa, and the proportion of OCa is about 60%-80%. Away from the shore and relatively high primary production in upper waters are the main reasons that OCa is predominant among all burial OC in sediments of the central Yellow Sea mud area. Burial of OC in this mud area is probably mainly influenced by the human activities. Although the economic development during the late 19th century caused by the first industrial revolution in China did not obviously increase the TOC burial fluxes in the sediments, the rise of industry and agriculture after the founding of new China has clearly increased the TOC burial flux since 1950s. Otherwise, we also realize that among TC burial fluxes, TIC account for about 10%-30% in sediments of the central Yellow Sea mud area, so its burial could not be simply ignored here. Distinct from TOC burial, long-term TIC burial fluxes variations relate with climate changes more closely: the East Asian summer monsoon may influence the strength of the Huanghe River (Yellow River) flood, which could further affect the transport of terrestrial IC from land to the central Yellow Sea as well as the burial of these IC in the sediments.展开更多
The formation and turnover of macroaggregates are critical processes influencing the dynamics and stabilization of soil organic carbon(SOC).Soil aggregate size distribution is directly related to the makeup and activi...The formation and turnover of macroaggregates are critical processes influencing the dynamics and stabilization of soil organic carbon(SOC).Soil aggregate size distribution is directly related to the makeup and activity of microbial communities.We incubated soils managed for>30 years as restored grassland(GL),farmland(FL)and bare fallow(BF)for 60 days using both intact and reduced aggregate size distributions(intact aggregate distribution(IAD)<6 mm;reduced aggregate distribution(RAD)<1 mm),in treatments with added glucose,alanine or inorganic N,to reveal activity and microbial community structure as a function of aggregate size and makeup.Over a 60-day incubation period,the highest phospholipid fatty acid(PLFA)abundance was on day 7 for bacteria and fungi,on day 15 for actinomycete.The majority of the variation in enzymatic activities was likely related to PLFA abundance.GL had higher microbial abundance and enzyme activity.Mechanically reducing macroaggregates(>0.25 mm)by 34.7%in GL soil with no substrate additions increased the abundance of PLFAs(average increase of 15.7%)and activities of β-glucosidase(increase of 17.4%)and N-acetyl-β-glucosaminidase(increase of 7.6%).The addition of C substrates increased PLFA abundance in FL and BF by averages of 18.8 and 33.4%,respectively,but not in GL soil.The results show that the effect of habitat destruction on microorganisms depends on the soil aggregates,due to a release of bioavailable C,and the addition of substrates for soils with limited nutrient availability.The protection of SOC is promoted by larger size soil aggregate structures that are important to different aggregate size classes in affecting soil C stabilization and microbial community structure and activity.展开更多
基金the Key Project of the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2022AAC02020)the Major Strategic Research Project of the Chinese Academy of Engineering and Local Cooperation(2021NXZD8)the Key Research and Development Plan Project of Ningxia Hui Autonomous Region,China(2022004129003).We are grateful to the editors and anonymous reviewers for their insightful comments and suggestions in improving this manuscript.
文摘It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems.
基金financially supported by the National Natural Science Foundation(No 31470657)Fundamental Research Funds for the Central Universities(No 2572015DA01)
文摘Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs frequently over forested soils. However, little is known about its impact on soil active organic carbon (SAOC), which is important to the global carbon cycle. To investigate this issue, we studied the active organic carbon in soils in the Larix gmelinii forests of the Da Xing'an Mountains (Greater Xing'an Mountains) in Northeastern China, which had been burned by high-intensity wildfire in two different years (2002 and 2008). Soil samples were collected monthly during the 2011 growing season from over 12 sample plots in burned and unburned soils and then analyzed to examine the dynamics of SAOC. Our results showed that active organic carbon content changed greatly after fire disturbance in relation to the amount of time elapsed since the fire. There were significant differences in microbial biomass carbon, dissolved organic carbon, light fraction organic carbon, particulate organic carbon between burned and unburned sample plots in 2002 and 2008 (p < 0.05). The correlations between active organic carbon and environmental factors such as water content, pH value and temperature of soils, and correlations between each carbon component changed after fire disturbance, also in relation to time since the fire. The seasonal dynamics of SAOC in all of the sample plots changed after fire disturbance; peak values appeared during the growing season. In plots burned in 2002 and 2008, the magnitude and occurrence time of peak values differed. Our findings provide basic data regarding the impact of fire disturbance on boreal forest soil-carbon cycling, carbon-balance mechanisms, and carbon contributions of forest ecosystem after wildfire disturbance.
文摘It has been gradually acknowleged clinically to rescue organic phosphorus poisoning by using active carbon as Hemoperfusion (HP),Which is particularly better in rescuing the severely poisoned than other methods use.However,during the practical treatment process,due to the organic phosphorus poisonings particularity of mechanism,variety of clinical symptoms,and urgency of rescue opportunity,it is of vital importance in higher rescuing success rate that the treater should possess a high sense of responsibility,great proficiency of operation skills,carefulness of observation and strictness of nursing.Our hospital has rescued 42 cases of severe organic phosphorus poisoning by active carbon HP from 1995 to October 1998,with good therapeutic effect.
基金supported by the National Natural Science Foundation of China (41261074)the Foundation of Educational Department of Jiangxi Province, China (GJJ12605)
文摘The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy field was continuously fertilized over 30 yr with nine different fertilizer treatments including N, P, K, NP, NK, NPK, 2NPK (two-fold NPK), NPK+manure (NPKM), and CK (no fertilization), N, 90 kg urea-N ha^-1 yr^-1; P, 45 kg triple superphosphate-P205 ha^-1 yr^-1; K, 75 kg potassium chloride-K20 ha^-1 yr^-1; and pig manure, 22 500 kg ha^-1 yr^-1. Soil samples were collected and determined for SOC, BC content, and enzyme activity. The results showed that the SOC in the NPKM treatment was significantly higher than those in the K, P, and CK treatments. The lowest SOC content was found in the CK treatment. SOC content was similar in the N, NP, NK, NPK, 2NPK, and NPKM treatments. There was no significant difference in BC content among different treatments. The BC-to-SOC ratios (BC/SOC) ranged from 0.50 to 0.63, suggesting that BC might originate from the same source. Regarding enzyme activity, NPK treatment had higher urease activity than NPKM treatment. The urease activity of NPKM treatment was significantly higher than that of 2NPK, NP, N, P, K, CK, and NPKM treatment which produced higher activities of acid phosphatase, catalase, and invertase than all other treatments. Our results indicated that long-term fertilization did not significantly affect BC content. Concurrent application of manure and mineral fertilizers increased SOC content and significantly enhanced soil enzyme activities. Correlation analysis showed that catalase activity was significantly associated with invertase activity, but SOC, BC, and enzyme activity levels were not significantly correlated with one another. No significant correlations were observed between BC and soil enzymes. It is unknown whether soil enzymes play a role in the decomposition of BC.
文摘A general research program, focusing on activated carbon fiber cloths (ACFC) and felt for environmental protection was performed. The objectives were multiple: (i) a better understanding of the adsorption mecha- nisms of these kinds of materials; (ii) the specification and optimization of new processes using these adsorbents; (iii) the modeling of the adsorption of organic pollutants using both the usual and original approaches; (iv) applications of ACFC in industrial processes. The general question was: how can activated carbon fiber cloths and felts be used in air treatment processes for the protection of environment. In order to provide an answer, different approaches were adopted. The materials (ACFC) were characterized in terms of macro structure and internal porosity. Specific studies were performed to get the air flow pattern through the fabrics. Head loss data were generated and modeled as a fi.mction of air velocity. The performances of ACF to remove volatile organic compounds (VOCs) were approached with the adsorption isotherms and breakthrough curves in various operating conditions. Regenera- tion by Joule effect shows a homogenous heating of adsorber modules with rolled or pleated layers. Examples of industrial developments were presented showing an interesting technology for the removal of VOCs, such as dichloromethane, benzene, isopropyl alcohol and toluene, alone or in a complex mixture.
基金Projects(20976200)supported by the National Natural Science Foundation of China
文摘To investigate the influence of the activated carbon pore structure on the adsorption of volatile organic compounds (VOCs), three commercial activated carbon samples were chosen. The fixed-bed thermostatic adsorption experiments were conducted under certain conditions, where toluene, acetone, and 1, 2-dichloroethane acted as adsorbents. Then, the incidence relation between the experimental results and the activated carbon pore structure was analyzed. After that, the results of the correlation analysis were verified in accordance with fractal theory and adsorption characteristic curve analysis. The results show that the pore diameter gradient is helpful for strengthening the intemal diffusion. Under the same condition, the adsorption of organic gases tends to be selective, and the positions of toluene, acetone and 1, 2-dichloroethane adsorbed on the activated carbon are mainly in the ranges of 1.27-1.49 nm, 0.67-0.84 nm and 1.39-1.75 nm, respectively. The relationship between adsorption capacity and activated carbon pore volume can accurately explain the spreading process of the adsorbents in the activated carbon.
基金financial support from the National Natural Science Foundation of China(22008107,21838004)DTRA through the grant HDTRA11910008 of the USA。
文摘The research on the adsorption equilibria,kinetics,and increase in process temperature of the volatile organic compound(VOC)adsorption in porous materials ensures safe production,thereby reducing production costs and improving separation efficiency.Therefore,it is critical in predicting the entire adsorption process based on minimal or no experimental input of the adsorbate and adsorbent.We discuss,in this review,the factors that affect the adsorption performance of VOCs in activated carbons,including the adsorption equilibrium,adsorption kinetics,and exotherm during adsorption.Subsequently,the existing prediction models are summarized and compared concerning the adsorption equilibrium,adsorption kinetics,and exothermic process of adsorption.We then propose a new prediction model based on intermolecular interaction and provide an outlook toward the design and manipulation of efficient adsorbents for the VOC system.
文摘The application of organic soil amendments is a common practice for increasing soil fertility and soil organic carbon (SOC) content. In recent years, a new product from biogas production, biogas slurry is increasingly applied to agricultural soils, although little is known about its effects on soil properties. In this study, the influence of this new product in comparison with liquid manure and sewage sludge on the organic carbon dynamics and enzyme activities were investigated in two different agricultural soils in short-term incubation studies. As a control, biologically inert sand was also amended with these organic wastes. In sand, biogas slurry degraded to 10.4% within 14 days, while no differences were found between the degradability of liquid manure and sewage sludge with 6.6% and 5.4%, respectively. However, although the degradability of biogas slurry was highest among the organic amendments, liquid manure application resulted in the highest respiration rates in the soil samples. This was likely due to the organic waste borne easily decomposable substrates which were most dominant in liquid manure. Organic waste applications were found to generally increase the activity of numerous enzymes but did not change the soil enzyme patterns. Thus, in general it was shown that the microbial population of the organic wastes will not become prominent when introduced with the manures to soils. Thus, an inoculation with organic waste borne microorganisms could likely be neglected when discussing the extent of organic carbon dynamics after organic waste application to agricultural soils.
基金financial support provided by the National Special Fund for Agro-scientific Research in the Public Interest of China(201303126)Agricultural Science and Technology Achievements Transformation Demonstration of Production and Application Technology and Popularization of Sandy Soil Amendment,Inner Mongolia,China(sq2012eca400008)。
文摘A bentonite-humic acid(B-HA) mixture added to degraded soils may improve soil physical and hydraulic properties, due to effects such as improved soil structure and increased water and nutrient retention, but its effect on soil physicochemical and biological properties, and grain quality is largely unknown. The effect of B-HA, added at 30 Mg ha^(-1), was studied at 1,3, 5 and 7 years after its addition to a degraded sandy soil in a semi-arid region of China. The addition of B-HA significantly increased water-filled pore space and soil organic carbon, especially at 3 to 5 years after its soil addition to the soil. Amending the sandy soil with B-HA also increased the content of microbial biomass(MB)-carbon,-nitrogen and-phosphorus, and the activities of urease, invertase, catalase and alkaline phosphatase. The significant effect of maize(Zea mays L.) growth stage on soil MB and enzyme activities accounted for 58 and 84% of their total variation, respectively. In comparison, B-HA accounted for 8% of the total variability for each of the same two variables. B-HA significantly enhanced soil properties and the uptake of N and P by maize in semi-arid areas. The use of B-HA product would be an effective management strategy to reclaim degraded sandy soils and foster sustainable agriculture production in northeast China and regions of the world with similar soils and climate.
基金Supported by the National Natural Science Foundation of China(21506194,21676255)the Natural Science Foundation of Zhejiang Province(Y16B070025)the Commission of Science and Technology of Zhejiang Province(2013C03021,2017C33106)
文摘An activated carbon pore-expanding technique was achieved through innovative reactivation by CO_2/microwave.The original and modified activated carbons were characterized by nitrogen adsorption–desorption,scanning electron microscopy,transmission electron microcopy,and Fourier transform infrared spectroscopy.The mesopore volume increased from 0.122 cm^3·g^(-1) to 0.270 cm^3·g^(-1),and a hierarchical pore structure was formed.A gradual decrease in the phenolic hydroxyl and carboxyl groups on the surface of activated carbon enhanced the surface inertia of granular activated carbon(GAC).The toluene desorption rate of the modified sample increased by 8.81% compared with that of the original GAC.Adsorption isotherm fittings revealed that the Langmuir model was applicable for the original and modified activated carbons.The isosteric adsorption heat of toluene on the activated carbon decreased by approximately 50%,which endowed the modified sample with excellent stability in application.The modified samples showed an enhanced desorption performance of toluene,thereby opening a way to extend the cycle life and improve the economic performance of carbon adsorbent in practical engineering applications.
基金The National Basic Research Program(973 Program)of China under contract No.2010CB951203the National Natural Science Foundation of China under contract Nos 41206057,41576067,41376075 and 41576061
文摘Mangrove degradation must reduce carbon sequestration in recent years, thereby aggravating global warming.Thus, short-term impacts of human activity on mangrove ecosystems are cause for concern from local governments and scientists. Mangroves sediments can provide detailed records of mangrove species variation in the last one hundred years, based on detailed 210 Pb data. The study traced the history of mangrove development and its response to environmental change over the last 140 years in two mangrove swamps of Guangxi, Southwest China. Average sedimentation rates were calculated to be 0.48 cm/a and 0.56 cm/a in the Yingluo Bay and the Maowei Sea, respectively. Chemical indicators(δ13Corg and C:N) were utilized to trace the contribution of mangrove-derived organic matter(MOM) using a ternary mixing model. Simultaneous use of mangrove pollen can help to supplement some of these limitations in diagenetic/overlap of isotopic signatures. We found that vertical distribution of MOM was consistent with mangrove pollen, which could provide similar information for tracing mangrove ecosystems. Therefore, mangrove development was reconstructed and divided into three stages: flourishing, degradation and re-flourishing/re-degradation period. The significant degradation, found in the period of 1968–1998 and 1907–2007 in the Yingluo Bay and the Maowei Sea, respectively, corresponding to a rapid increase of reclamation area and seawall length, rather than climate change as recorded in the region.
基金Supported by the China National Science and Technology Major Project(2017ZX05063002-009)National Natural Science Foundation of China(4177021173,41972120)CNPC-Southwest Petroleum University Innovation Consortium Science and Technology Cooperation Project(2020CX020000)。
文摘Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied using cyclostratigraphic and geochemical methods.d13 C and chemical index of alteration(CIA)were used to filter the astronomical orbit parameters recorded in sediments.It is found that the climate change driven by orbital cycle controls the fluctuations of sea level at different scales,obliquity forcing climate changes drive thermohaline circulation(THC)of the ocean,and THC-induced bottom currents transport nutrient-laden water from high latitude regions to the surface water of low-latitude area.Hence,THC is the main dynamic mechanism of organic-carbon supply.The marine productivity indexes of Ba/Al and Ni/Al indicate that volcanic activities had limited effect on marine productivity but had great influences on organic carbon preservation efficiency in late Hirnantian(E4).Paleo-ocean redox environmental indicators Th/U,V/Cr and V/(V+Ni)show that there is a significant correlation between volcanism and oxygen content in Paleo-ocean,so it is inferred that volcanisms controlled the organic carbon preservation efficiency by regulating oxygen content in Paleo-ocean,and the difference in volcanism intensity in different areas is an important factor for the differential preservation efficiency of organic carbon.The organic carbon input driven by orbital cycle and the preservation efficiency affected by volcanisms worked together to control the enrichment of organic carbon in the Middle–Upper Yangtze region.
基金Projects(21376274,51206192)supported by the National Natural Science Foundation of China
文摘Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples.During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57-17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.
文摘The effects of peptides,amino acids and organic bases as an axial ligand on reaction ac- tivities in the electrocarboxylation of benzyl chloride with CO_2 catalyzed by CoTPP are reported. The imidazole organic base,peptide containing —SH and amino acid containing imidazolyl en- hance the catalytic activity.The effect of imidazole amounts on the catalytic activity of CoTPP is studied.
基金supported by Major Natural Science Foundation of Guangdong Provincethe Trans-century Training Programmed Foundation for the Talents of the State Education Ministry of Chinaand the Foundation for the Key Teachers in Chinese University
文摘The dynamic competitive adsorption behaviors of different binary organic vapor mixtures on ACF-Ps under different operation conditions were investigated by gas chromatography in this paper. The studied mixtures included benzene/toluene, toluene/xylene, benzene/isopropylbenzene, ethyl acetate/toluene and benzene/ethyl acetate. Experimental results show that various ACF-Ps, as with ACF-W, can remove both vapors in binary vapor mixtures with over 99% of removal efficiency before the breakthrough point of the more weakly adsorbed vapor. In dynamic competitive adsorption, the more weakly adsorbed vapor not only penetrates early, but also will be displaced and desorbed consequently by stronger adsorbate and therefore produces a rolling up in the breakthrough curve. The ACF-Ps prepared at different temperatures have somewhat different adsorption selectivity. The feed concentration ratio of vapors, the length/diameter ratio and the thick of bed have effect on competitive adsorption. The competitive adsorption ability of a vapor is mainly related to its boiling point. Usually, the higher the boiling point, the stronger the vapor adsorbed on ACF-P.
基金Chinese Ministry of Education Doctor Fund No.: 2000055804.
文摘Organic chelating reagent influences upon the redox adsorption of activated carbon fiber towards Au3+ were systematically investigated. The experimental results indicated that the presence of organic chelating reagent on activated carbon fiber strongly affects adsorption capacity of activated carbon fiber towards Au3+. The reduction-adsorption amount of Au3+ increased three times by the presence of 8-quinolinol. Furthermore, The reduction-adsorption amount of Au3+ depended on the pH value of adsorption and temperature.
基金Supported by the Work Project of China Geological Survey(1212010911062)Open Foundation of Karst Dynamics Laboratory(kdl2008-10)+1 种基金Guangxi Zhuang Autonomous Region Innovation Project(0842008)National Natural Science Foundation(40872213)~~
文摘[Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbon and soil carbon management index(CMI)of different land use types in Guilin Maocun karst area were studied.Sampling with field investigation and laboratory testing was carried out.Heavy potassium chromate method was adopted to determine soil organic matter.333 mmol/L KMnO4 oxidation method was used to determine active organic carbon.[Result]With active soil organic matter increasing,the differences of CMI between different land use types were bigger.The CMI value of different land uses was shrubforest paddy fielddry farmland.The statistical analysis showed that labile organic matter was related with major soil properties at a significant level.[Conclusion]Labile organic matter could be used to reveal the influence of different land use types on soil organic matter and carbon management index in karst area.
基金The research was funded by National Natural Science Foundation (40231016) and Canadian International Development Agency (CIDA).
文摘The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils derived from Changbai and Qilian Mountain areas. By analyzing and fitting the CO2 evolved rates with SOC mineralization, the results showed that active carbon pools accounted tor 1.0% to 8.5% of SOC with an average of mean resistant times (MRTs) for 24 days, and slow carbon pools accounted for 91% to 99% of SOC with an average of MRTs for 179 years. The sizes and MRTs of slow carbon pools showed that SOC in Qilian Mountain sites was more difficult to decompose than that in Changbai Mountain sites. By analyzing the effects of temperature, soil clay content and elevation on SOC mineralization, results indicated that mineralization of SOC was directly related to temperature and that content of accumulated SOC and size of slow carbon pools from Changbai Mountain and Qilian Mountain sites increased linearly with increasing clay content, respectively, which showed temperature and clay content could make greater effect on mineralization of SOC.
基金The National Key Basic Research Program of China under contract No.2010CB428902the United Program of National Natural Science Foundation of China and Shandong Province under contract No.U1406403the Special Fund for Basic Scientific Research Business of Central Public Research Institutes under contrast No.20603022013003
文摘Long-term changes of composition, sources and burial fluxes of TOC (total organic carbon) in sediments of the central Yellow Sea mud area and their possible affecting factors are discussed in this paper. Firstly, similarity analysis is employed to confirm that the carbon burial features resulted from two collected cores are typical in the central Yellow Sea mud area where YSWC (Yellow Sea Warm Current) is prevalent. On this basis, the burial flux of TOC here was considered to be 235.5-488.4 pmol/(cm^2.a) since the first industrial revolution, accounting for about 70%-90% among burial fluxes of TC (total carbon) in the sediments. Compared TOC/TC ratio in the two cores with that in other marine sediments worldwide, we suggest that the growth of calcareous/non-calcareous organisms and dissolution of IC (inorganic carbon) are important factors controlling the TOC/TC ratio in sediment. Results of two-end mixed model based on fi13C data indicate that marine-derived organic carbon (OCa) is the main part among total burial organic carbon which accounts for a ratio over 85%. Due to the high TOC/TC ratio in the two cores, TC in the sediments also mainly exists as OCa, and the proportion of OCa is about 60%-80%. Away from the shore and relatively high primary production in upper waters are the main reasons that OCa is predominant among all burial OC in sediments of the central Yellow Sea mud area. Burial of OC in this mud area is probably mainly influenced by the human activities. Although the economic development during the late 19th century caused by the first industrial revolution in China did not obviously increase the TOC burial fluxes in the sediments, the rise of industry and agriculture after the founding of new China has clearly increased the TOC burial flux since 1950s. Otherwise, we also realize that among TC burial fluxes, TIC account for about 10%-30% in sediments of the central Yellow Sea mud area, so its burial could not be simply ignored here. Distinct from TOC burial, long-term TIC burial fluxes variations relate with climate changes more closely: the East Asian summer monsoon may influence the strength of the Huanghe River (Yellow River) flood, which could further affect the transport of terrestrial IC from land to the central Yellow Sea as well as the burial of these IC in the sediments.
基金funded by the National Key Research and Development Program of China (2016YFD0300806-1, 2016YFD0200309-6 and 2017YFD0300605-3)the National Natural Science Foundation of China (41771327 and 41571219)the Young Scientists’ Group of North Institute of Geography and Agroecology, Chinese Academy of Sciences (DLSXZ1605)
文摘The formation and turnover of macroaggregates are critical processes influencing the dynamics and stabilization of soil organic carbon(SOC).Soil aggregate size distribution is directly related to the makeup and activity of microbial communities.We incubated soils managed for>30 years as restored grassland(GL),farmland(FL)and bare fallow(BF)for 60 days using both intact and reduced aggregate size distributions(intact aggregate distribution(IAD)<6 mm;reduced aggregate distribution(RAD)<1 mm),in treatments with added glucose,alanine or inorganic N,to reveal activity and microbial community structure as a function of aggregate size and makeup.Over a 60-day incubation period,the highest phospholipid fatty acid(PLFA)abundance was on day 7 for bacteria and fungi,on day 15 for actinomycete.The majority of the variation in enzymatic activities was likely related to PLFA abundance.GL had higher microbial abundance and enzyme activity.Mechanically reducing macroaggregates(>0.25 mm)by 34.7%in GL soil with no substrate additions increased the abundance of PLFAs(average increase of 15.7%)and activities of β-glucosidase(increase of 17.4%)and N-acetyl-β-glucosaminidase(increase of 7.6%).The addition of C substrates increased PLFA abundance in FL and BF by averages of 18.8 and 33.4%,respectively,but not in GL soil.The results show that the effect of habitat destruction on microorganisms depends on the soil aggregates,due to a release of bioavailable C,and the addition of substrates for soils with limited nutrient availability.The protection of SOC is promoted by larger size soil aggregate structures that are important to different aggregate size classes in affecting soil C stabilization and microbial community structure and activity.