This paper presents a comprehensive charging operation for an electric-drive-reconfigured onboard charger(EDROC)with active power factor correction(APFC).The charging topology exclusively utilizes the three-phase perm...This paper presents a comprehensive charging operation for an electric-drive-reconfigured onboard charger(EDROC)with active power factor correction(APFC).The charging topology exclusively utilizes the three-phase permanent magnet synchronous motor(PMSM)propulsion system as a three-channel boost-type converter in which only a contactor and a small diode bridge are added.First,the operation scenario of the EDROC is introduced.Second,the relationship between electromagnetic torque and rotor position is investigated.Third,the current ripple cancellation of the EDROC is discussed in detail.Moreover,to implement the single-phase APFC along with charging voltage/current regulation of propulsion battery,control strategies including current balancing and synchronous/interleaving PWM strategies are incorporated.Finally,200W proof-of-concept prototype-based tests are conducted under different operation scenarios.展开更多
A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The t...A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.展开更多
For a conventional high-power active power factor correction(APFC)boost converter,its output capacitor needs to be precharged,which means that two power switches of the main circuit and the control circuit are needed ...For a conventional high-power active power factor correction(APFC)boost converter,its output capacitor needs to be precharged,which means that two power switches of the main circuit and the control circuit are needed to be respectively turned on and turned off in a fixed order.After the main circuit switch is turned on,it is necessary to wait for precharging before turning on the control circuit power switch.Once an inadvertent operation is performed,an overcurrent phenomenon from the output capacitor will occur.In this study,the buck circuit is used as the pre-stage snubber circuit,which can directly supply power to the circuit without precharging the output capacitor.As a result,potential safety hazard caused by the overcurrent due to the capacitor and the charging maloperation during the start-up stage can be avoided.Theoretical analysis and simulation experiment show that the DC boost converter with buck buffer can maintain the peak value of the main circuit within the safe range when the device boot does not precharge the output capacitor,and thus the safety and stable operation of the DC boost converter are ensured.展开更多
In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed ...In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion展开更多
基金This work was supported in part by the National Natural Science Foundation of China(51807098,61673226)and the Six Talent Peaks Project in Jiangsu Province(2015-JY-028).
文摘This paper presents a comprehensive charging operation for an electric-drive-reconfigured onboard charger(EDROC)with active power factor correction(APFC).The charging topology exclusively utilizes the three-phase permanent magnet synchronous motor(PMSM)propulsion system as a three-channel boost-type converter in which only a contactor and a small diode bridge are added.First,the operation scenario of the EDROC is introduced.Second,the relationship between electromagnetic torque and rotor position is investigated.Third,the current ripple cancellation of the EDROC is discussed in detail.Moreover,to implement the single-phase APFC along with charging voltage/current regulation of propulsion battery,control strategies including current balancing and synchronous/interleaving PWM strategies are incorporated.Finally,200W proof-of-concept prototype-based tests are conducted under different operation scenarios.
文摘A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.
基金National Natural Science Foundation of China(No.61761027)。
文摘For a conventional high-power active power factor correction(APFC)boost converter,its output capacitor needs to be precharged,which means that two power switches of the main circuit and the control circuit are needed to be respectively turned on and turned off in a fixed order.After the main circuit switch is turned on,it is necessary to wait for precharging before turning on the control circuit power switch.Once an inadvertent operation is performed,an overcurrent phenomenon from the output capacitor will occur.In this study,the buck circuit is used as the pre-stage snubber circuit,which can directly supply power to the circuit without precharging the output capacitor.As a result,potential safety hazard caused by the overcurrent due to the capacitor and the charging maloperation during the start-up stage can be avoided.Theoretical analysis and simulation experiment show that the DC boost converter with buck buffer can maintain the peak value of the main circuit within the safe range when the device boot does not precharge the output capacitor,and thus the safety and stable operation of the DC boost converter are ensured.
基金National Natural Science Foundation of China(No.61261029)
文摘In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion