期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
A Generalized Limit Equilibrium Method for the Solution of Active Earth Pressure on a Retaining Wall 被引量:11
1
作者 OUYANG Chao-jun XU Qiang +2 位作者 HE Si-ming LUO Yu WU Yong 《Journal of Mountain Science》 SCIE CSCD 2013年第6期1018-1027,共10页
In this paper, a generalized limit equilibrium method of solving the active earth pressure problem behind a retaining wall is proposed.Differing from other limit equilibrium methods, an arbitrary slip surface shape wi... In this paper, a generalized limit equilibrium method of solving the active earth pressure problem behind a retaining wall is proposed.Differing from other limit equilibrium methods, an arbitrary slip surface shape without any assumptions of pre-defined shapes is needed in the current framework, which is verified to find the most probable failure slip surface. Based on the current computational framework, numerical comparisons with experiment, discrete element method and other methods are carried out. In addition, the influences of the inclination of the wall, the soil cohesion, the angle of the internal friction of the soil, the slope inclination of the backfill soil on the critical pressure coefficient of the soil, the point of application of the resultant earth pressure and the shape of the slip surface are also carefully investigated. The results demonstrate that limit equilibrium solution from predefined slip plane assumption, including Coulomb solution, is a special case of current computational framework. It is well illustrated that the current method is feasible to evaluate the characteristics of earth pressure problem. 展开更多
关键词 Limit equilibrium method Retainingwall active earth pressure Critical slip surface
下载PDF
Improved method for determining active earth pressure considering arching effect and actual slip surface 被引量:3
2
作者 HE Zhong-ming LIU Zheng-fu +1 位作者 LIU Xiao-hong BIAN Han-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2032-2042,共11页
To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement a... To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods. 展开更多
关键词 particle image velocimetry retaining wall soil arching effect active earth pressure
下载PDF
Design of the pressure regulation algorithm for active braking in vehicle ACC system 被引量:4
3
作者 马国成 刘昭度 +1 位作者 裴晓飞 叶阳 《Journal of Beijing Institute of Technology》 EI CAS 2011年第4期483-489,共7页
To develop the pressure control algorithm for active braking of adaptive cruise control(ACC) system,a test bench with real parts of the tested vehicle is built.With the dynamic analysis of the active braking actuato... To develop the pressure control algorithm for active braking of adaptive cruise control(ACC) system,a test bench with real parts of the tested vehicle is built.With the dynamic analysis of the active braking actuators,it is demonstrated that different duty of pulse-width modulation(PWM) signals could control the pressure changing rate of the wheel cylinder.To obtain that signal,a modified proportional-integral-differential(PID) control algorithm is developed using the variable parameter method,the control value reset method,the dead zone method and the integral saturation method.Experimental results show that the delay and overshoot of the pressure response could be reduced considerably using the modified PID algorithm compared with the conventional one.The proposed pressure control algorithm could be used for the further development of the ACC's controller. 展开更多
关键词 adaptive cruise control(ACC) active braking pressure control modified proportional-integral-differential(PID) control algorithm
下载PDF
Estimation of active earth pressure based on pseudo-dynamic approach and discretization technique 被引量:2
4
作者 LUO Wen-jun GONG Chen-jie +1 位作者 WANG Huan-yu YANG Xiao-li 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2890-2904,共15页
A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduce... A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil. 展开更多
关键词 pseudo-dynamic approach discretization technique upper-bound analysis INHOMOGENEITY seismic active earth pressure coefficient
下载PDF
DISTRIBUTION OF ACTIVE EARTH PRESSURE OF RETAINING WALL WITH WALL MOVEMENT OF ROTATION ABOUT TOP 被引量:1
5
作者 王元战 唐照评 郑斌 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第7期761-767,共7页
Based on the Coulomb's theory that the earth pressure against the back of a retaining wall is due to the thrust exerted by the sliding wedge of soil from the back of the wall to a plane which passes through the bo... Based on the Coulomb's theory that the earth pressure against the back of a retaining wall is due to the thrust exerted by the sliding wedge of soil from the back of the wall to a plane which passes through the bottom edge of the wall and has an inclination equal to the angle of θ, the theoretical answers to the unit earth pressure, the resultant earth pressure and the point of application of the resultant earth pressure on a retaining wall were obtained for the wall movement mode of rotation about top. The comparisons were made among the formula presented here, the formula for the wall movement mode of translation, the Coulomb's formula and some experimental observations. It is demonstrated that the magnitudes of the resultant earth pressures for the wall movement mode of rotation about top is equal to that determined by the formula for the wall movement mode of translation and the Coulomb's theory. But the distribution of the earth pressure and the points of application of the resultant earth pressures have significant difference. 展开更多
关键词 retaining wall rotation about top active earth pressure DISTRIBUTION point of application
下载PDF
Comparative study of different theories on active earth pressure 被引量:1
6
作者 S.P.Yap F.A.Salman S.M.Shirazi 《Journal of Central South University》 SCIE EI CAS 2012年第10期2933-2939,共7页
Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on com... Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design. 展开更多
关键词 active earth pressure retaining wall PLAXIS comparative study RANKINE's theory COULOMB's theory
下载PDF
Active earth pressure acting on retaining wall considering anisotropic seepage effect 被引量:4
7
作者 HU Zheng YANG Zhong-xuan Stephen Philip WILKINSON 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1202-1211,共10页
This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of ... This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of cohesionless and fully saturated sand with anisotropic permeability along the vertical and horizontal directions. The extremely unfavourable seepage flow on the back of the retaining wall due to heavy rainfall or other causes will dramatically increase the active earth pressure acting on the retaining walls, increasing the probability of instability. In this paper, an analytical solution to the Laplace differential governing equation is presented for seepage problems considering anisotropic permeability based on Fourier series expansion method. A good correlation is observed between this and the seepage forces along a planar surface generated via finite element analysis. The active earth pressure is calculated using Coulomb's earth pressure theory based on the calculated pore water pressures. The obtained solutions can be degenerated into Coulomb's formula when no seepage exists in the backfill. A parametric study on the influence of the degree of anisotropy in seepage flow on the distribution of active earth pressure behind the wall is conducted by varying ratios of permeability coefficients in the vertical and horizontal directions,showing that anisotropic seepage flow has a prominent impact on active earth pressure distribution. Other factors such as effective internal friction angle of soils and soil/wall friction conditions are also considered. 展开更多
关键词 active earth pressure Seepage Anisotropic permeability Retaining wall Fourier series expansion Cohesionless soils
下载PDF
The Effect of Oxygen Partial Pressure during Active Layer Deposition on Bias Stability of a-InGaZnO TFTs 被引量:2
8
作者 黄晓明 武辰飞 +3 位作者 陆海 任芳芳 朱洪波 王永进 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期171-174,共4页
The effect of oxygen partial pressure (Po2) during the channel layer deposition on bias stability of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) is investigated. As Po2 increases fr... The effect of oxygen partial pressure (Po2) during the channel layer deposition on bias stability of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) is investigated. As Po2 increases from 10% to 30%, it is found that the device shows enhanced bias stress stability with significantly reduced threshold voltage drift under positive gate bias stress. Based on the x-ray photoelectron spectroscopy measurement, the concentration of oxygen vacancies (Or) within the a-IGZO layer is suppressed by increasing Po2. Meanwhile, the low-frequency noise analysis indicates that the average trap density near the channel/dielectric interface continuously drops with increasing Po2. Therefore, the improved interface quality with increasing Po2 during the channel layer deposition can be attributed to the reduction of interface Ov-related defects, which agrees with the enhanced bias stress stability of the a-IGZO TFTs. 展开更多
关键词 TFT The Effect of Oxygen Partial pressure during active Layer Deposition on Bias Stability of a-InGaZnO TFTs
下载PDF
Limit analysis method for active earth pressure on laggings between stabilizing piles 被引量:2
9
作者 WANG Ming-min WU Shu-guang WANG Gui-lin 《Journal of Mountain Science》 SCIE CSCD 2017年第1期196-204,共9页
Stabilizing pile is a kind of earth shoring structure frequently used in slope engineering. When the piles have cantilever segments above the ground,laggings are usually installed to avoid collapse of soil between pil... Stabilizing pile is a kind of earth shoring structure frequently used in slope engineering. When the piles have cantilever segments above the ground,laggings are usually installed to avoid collapse of soil between piles. Evaluating the earth pressure acting on laggings is of great importance in design process.Since laggings are usually less stiff than piles,the lateral pressure on lagging is much closer to active earth pressure. In order to estimate the lateral earth pressure on lagging more accurately,first,a model test of cantilever stabilizing pile and lagging systems was carried out. Then,basing the experimental results a three-dimensional sliding wedge model was established. Last,the calculation process of the total active force on lagging is presented based on the kinematic approach of limit analysis. A comparison is made between the total active force on lagging calculated by the formula presented in this study and the force on a same-size rigid retaining wall obtained from Rankine's theory. It is found that the proposed method fits well with the experimental results.Parametric studies show that the total active force on lagging increases with the growth of the lagging height and the lagging clear span; while decreases asthe soil internal friction angle and soil cohesion increase. 展开更多
关键词 Stabilizing pile Lagging active earth pressure Limit analysis method Sliding surface
下载PDF
Active earth pressure for subgrade retaining walls in cohesive backfills with tensile strength cut-off subjected to seepage effects
10
作者 FU He-lin WANG Cheng-yang LI Huan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2148-2159,共12页
The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the pred... The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the predicted tensile strength is reduced or eliminated. This work then presented a kinematical approach to evaluate the active earth pressure on subgrade retaining walls in cohesive backfills with saturated seepage effects. An effective rotational failure mechanism was constructed assuming an associative flow rule. The impact of seepage forces, whose distribution is described by a closed-form solution, was incorporated into the analysis. The thrust of active earth pressure was derived from the energy conservation equation, and an optimization program was then coded to obtain the most critical solution. Several sets of charts were produced to perform a parameter analysis. The results show that taking soil cohesion into account has a distinct beneficial influence on the stability of retaining walls, while seepage forces have an adverse effect. The active earth pressure increases when tensile strength cut-off is considered, and this increment is more noticeable under larger cohesion. 展开更多
关键词 active earth pressure seepage effect subgrade retaining wall tensile strength cut-off
下载PDF
Pseudo-dynamic active earth pressure behind retaining wall for cohesive soil backfill
11
作者 马少俊 王奎华 吴文兵 《Journal of Central South University》 SCIE EI CAS 2012年第11期3298-3304,共7页
A formula was derived for the computation of seismic active earth pressure behind retaining wall using pseudo-dynamic method.This formula considered the actual dynamic effect with variation of time and propagation of ... A formula was derived for the computation of seismic active earth pressure behind retaining wall using pseudo-dynamic method.This formula considered the actual dynamic effect with variation of time and propagation of shear and primary wave velocities through the soil backfills.The influence of tension crack in the top portion of the backfill under seismic loading was investigated.The effects of wall friction angle,soil friction angle,horizontal and vertical seismic coefficients on the seismic active force were also explored.The parametric study shows that the total seismic active force increases as horizontal seismic coefficient increases,while it decreases with the increase in vertical seismic coefficient,internal friction angle and unit cohesion.The seismic active force calculated by the proposed method is larger than that calculated by previous theory. 展开更多
关键词 seismic active earth pressure pseudo-dynamic method tension cracked zone retaining wall
下载PDF
Technique and experiment of active direct gas pressure measurement in coal roadway
12
作者 CHEN Xue-xi MA Shang-quan QI Li-ming 《Journal of Coal Science & Engineering(China)》 2009年第2期210-214,共5页
An active measurement method and its principle was introduced consideringthe low success rate,special difficulty,and long measurement time of the direct gas pressuremeasurement currently used in coal roadways.The tech... An active measurement method and its principle was introduced consideringthe low success rate,special difficulty,and long measurement time of the direct gas pressuremeasurement currently used in coal roadways.The technology of drilling,boreholesealing depth,borehole sealing length,sealing control of the measuring process,compensatorycomputation of gas loss quantity and other key techniques were discussed.Finally,based on the latest instrument the authors developed,a series of experiments of directgas pressure measurement in the coal roadways of the Jincheng and Tongchuanmine district,were carried out.The experimental results show that active gas pressuremeasurement technique has advantages as follows:(1) the application scope of direct gaspressure measurement technique is wide and it does not have the restriction of coalhardness,coal seam fissure and other conditions;(2) the measured results are credible,which can be tested by the same gas pressure value acquired from a different borehole inthe same place;(3) the measurement process is convenient and quick,it takes about 2 to3 days to acquire the gas pressure value in a coal seam. 展开更多
关键词 coal roadway active gas pressure measurement method key techniques experimental research
下载PDF
Activation pressure studies with an iron-based catalyst for slurry Fischer-Tropsch synthesis 被引量:2
13
作者 Qinglan Hao Liang Bai +1 位作者 Hongwei Xiang Yongwang Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第4期429-435,共7页
Fischer-Tropsch synthesis (FTS) was carried out with an industrial iron-based catalyst (100Fe/5Cu/6K/16SiO2, by weight) under the baseline conditions in a stirred tank slurry reactor (STSR). The effects of activ... Fischer-Tropsch synthesis (FTS) was carried out with an industrial iron-based catalyst (100Fe/5Cu/6K/16SiO2, by weight) under the baseline conditions in a stirred tank slurry reactor (STSR). The effects of activation pressure on the catalyst activity and selectivity were investigated. It was found that iron phase compositions, textural properties, and FTS performances of the catalysts were strongly dependent on activation pressure. The high activation pressure retards the carburization. MФssbauer effect spectroscopy (MES) results indicated that the contents of the iron carbides clearly decrease with the increase of activation pressure, especially for the activation pressure increasing from 1.0 MPa to 1.5 MPa, and the reverse trend is observed for superparamagnetic Fe^3+ (spm). The higher content of Fe^3+ (spm) results in the higher amount of CO2 in tail gas when the catalyst is reduced at higher pressure. The catalyst activity decreases with the increase of activation pressure. The high quantity of iron carbides is necessary to obtain high FTS activity. However, the activity of the catalyst activated in syngas can not be predicted solely from the fraction of the carbides. It is concluded that activation with syngas at the lower pressure would be the most desirable for the better activity and stability on the iron-based catalyst. 展开更多
关键词 wFischer-Tropsch synthesis spray-dried iron catalyst activation pressure slurry reactor MCssbauer effect spectroscopy
下载PDF
Optimized Synthesis of Carbon Aerogels via Ambient Pressure Drying Process as Electrode for Supercapacitors
14
作者 袁磊 CHANG Lijuan +5 位作者 FU Zhibing YANG Xi JIAO Xingli TANG Yongjian LIU Xichuan 王朝阳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1325-1331,共7页
Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas... Carbon aerogels were synthesized via ambient pressure drying process using resorcinolformaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas and adjust pore size distribution. The synthesis process was optimized, and the morphology, structure, adsorption properties and electrochemical behavior of different samples were characterized. The CO2-activated samples achieved a high specific capacitance of 129.2 F/g in 6 M KOH electrolytes at the current density of 1 m A/cm^2 within the voltage range of 0-0.8 V. The optimized activation temperature and duration were determined to be 950 ℃ and 4 h, respectively. 展开更多
关键词 supercapacitors carbon aerogels ambient pressure drying process activation
下载PDF
Earth Pressure of Retaining Structure Induced by Subgrade under Rainfall
15
作者 Yuwei Zhang Junzhi Lin Jun Zhao 《Open Journal of Civil Engineering》 2016年第3期495-501,共7页
This article selects the retaining wall as the research object, introducing the rainfall infiltration model, considering the infiltration of rainwater into the groundwater recharge, analysizing the variation of earth ... This article selects the retaining wall as the research object, introducing the rainfall infiltration model, considering the infiltration of rainwater into the groundwater recharge, analysizing the variation of earth pressure in the subgrade retaining wall. On this occasion, the back of retaining wall produces stable seepage water and compares with the non drainage water body. The results show that, with the infiltration of rainwater into the groundwater recharge, the greater the active earth pressure under the condition of rainfall appears, more quickly the active earth pressure of the retaining wall with the drainage body increases. The matrix suction of unsaturated soils, which is infiltrated into soil of subgrade, has a positive effect on the shear strength of the earth pressure. 展开更多
关键词 Subgrade Engineering Matrix Suction Limit Equilibrium Method active Earth pressure Retaining Wall Rainfall Infiltration
下载PDF
General variational solution for seismic and static active earth pressure on rigid walls considering soil tensile strength cut-off
16
作者 Shiguo XIAO Yuan QI Pan XIA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第5期432-449,共18页
According to the limit equilibrium state of soils behind rigid walls and the pseudo-static approach,a general closed-form solution to seismic and static active earth pressure on the walls,which considers shear and ten... According to the limit equilibrium state of soils behind rigid walls and the pseudo-static approach,a general closed-form solution to seismic and static active earth pressure on the walls,which considers shear and tension failure of the retained soil,is put forward using a variational calculus method.The application point of the active resultant force specified in the proposed method is explained with a clear physical meaning related to possible movement modes of the walls.In respect of the derived nine dependent equations reflecting the functional characteristics of the earth pressure,the proposed method can be performed easily via an implicit strategy.There are 13 basic factors related to the retained soils,walls,and external loads to be involved in the proposed method.The tension crack segment of the slip surface is obviously influenced by these parameters,apart from vertical seismic coefficient and geometric bounds of the surcharge,but the shear slip segment maintains an approximately planar shape almost uninfluenced by these parameters.Noticeably,the proposed method quantitatively reflects that the resultant of the active earth pressure is always within a limited range under different possible movements of the same wall. 展开更多
关键词 active earth pressure Tensile strength cut-off Variational calculus method Pseudo-static method Strip surcharge
原文传递
Upper bound solution to seismic active earth pressure of submerged backfill subjected to partial drainage 被引量:1
17
作者 Zhengqiang ZENG Shengzhi WU Cheng LYU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第6期1480-1493,共14页
In waterfront geotechnical engineering,seismic and drainage conditions must be considered in the design of retaining structures.This paper proposes a general analytical method to evaluate the seismic active earth pres... In waterfront geotechnical engineering,seismic and drainage conditions must be considered in the design of retaining structures.This paper proposes a general analytical method to evaluate the seismic active earth pressure on a retaining wall with backfill subjected to partial steady seepage flow under seismic conditions.The method comprises the following steps:i)determination of the total head,ii)upper bound solution of seismic active earth thrust,and iii)deduction for the earth pressure distribution.The determination of total head h(x,z)relies on the Fourier series expansions,and the expressions of the seismic active earth thrust and pressure are derived by using the upper bound theorem.Parametric studies reveal that insufficient drainage and earthquakes are crucial factors that cause unfavorable earth pressure.The numerical results confirm the validity of the total head distribution.Comparisons indicate that the proposed method is consistent with other relevant existing methods in terms of predicting seismic active earth pressure.The method can be applied to the seismic design of waterfront retaining walls. 展开更多
关键词 seismic active earth pressure partial seepage flow pore pressure ANISOTROPY upper bound theorem
原文传递
Tropical forest canopies and their relationships with climate and disturbance: results from a global dataset of consistent field-based measurements 被引量:1
18
作者 marion pfeifer alemu gonsamo +26 位作者 william woodgate luis cayuela andrew r.marshall alicia ledo timothy c.e.paine rob marchant andrew burt kim calders colin courtney-mustaphi aida cuni-sanchez nicolas j.deere dereje denu jose gonzalez de tanago robin hayward alvaro lau manuel j.macía pieter i.olivier petri pellikka hamidu seki deo shirima rebecca trevithick beatrice wedeux charlotte wheeler pantaleo k.t.munishi thomas martin abdul mustari philip j.platts 《Forest Ecosystems》 SCIE CSCD 2018年第1期77-90,共14页
Background: Canopy structure, defined by leaf area index (LAI), fractional vegetation cover (FCover) and fraction of absorbed photosynthetically active radiation (fAPAR), regulates a wide range of forest functi... Background: Canopy structure, defined by leaf area index (LAI), fractional vegetation cover (FCover) and fraction of absorbed photosynthetically active radiation (fAPAR), regulates a wide range of forest functions and ecosystem services. Spatially consistent field-measurements of canopy structure are however lacking, particularly for the tropics. Methods: Here, we introduce the Global LAI database: a global dataset of field-based canopy structure measurements spanning tropical forests in four continents (Africa, Asia, Australia and the Americas). We use these measurements to test for climate dependencies within and across continents, and to test for the potential of anthropogenic disturbance and forest protection to modulate those dependences. Results: Using data collected from 887 tropical forest plots, we show that maximum water deficit, defined across the most arid months of the year, is an important predictor of canopy structure, with all three canopy attributes declining significantly with increasing water deficit. Canopy attributes also increase with minimum temperature, and with the protection of forests according to both active (within protected areas) and passive measures (through topography). Once protection and continent effects are accounted for, other anthropogenic measures (e.g. human population) do not improve the model. Conclusions: We conclude that canopy structure in the tropics is primarily a consequence of forest adaptation to the maximum water deficits historically experienced within a given region. Climate change, and in particular changes in drought regimes may thus affect forest structure and function, but forest protection may offer some resilience against this effect. 展开更多
关键词 Leaf area index Fractional vegetation cover Fraction of absorbed photosynthetically active radiation Human population pressure Protected areas DROUGHT Climate change
下载PDF
Internal variable gradient model for active earth pressure of rigid retaining wall moving with translation
19
作者 Haoxiang Chen Mingyang Wang +1 位作者 Shuo Wang Chengzhi Qi 《Geohazard Mechanics》 2024年第3期189-196,共8页
The instability of retaining wall is a key factor for many geo-hazards,such as landslides.To estimate the stability of retaining wall,the distribution of earth pressure is necessary.The results of in-situ observations... The instability of retaining wall is a key factor for many geo-hazards,such as landslides.To estimate the stability of retaining wall,the distribution of earth pressure is necessary.The results of in-situ observations and indoor experiments demonstrate that the distribution of earth pressure behind the retaining wall exhibits remarkable nonlinearity.When the results are analyzed in details,the oscillation and quasi-periodicity of the distribution of earth pressure are observed,which has not been given widely concerns and cannot be described by the existing analytical models.Based on the internal variable gradient theory and operator averaging method,a gradientenhanced softening constitutive model is proposed in this paper to describe the oscillation and quasiperiodicity of the distribution of earth pressure acting on the retaining wall,by introducing the high-order gradient terms of the hydrostatic pressure into Mohr-Coulomb yield condition.In order to check the applicability of the proposed formulation,the predictions from the formulations are compared with the full-scale and laboratory-scale test results as well as the existing formulations.It is noted from the comparisons between predicted and measured values that the results of gradient-dependent softening constitutive model provides the comparable approximations for active earth pressure and describes the oscillation and quasi-periodicity very well.This model may enhance the comprehension of soil mechanics and provide a novel view for the design of the retaining wall. 展开更多
关键词 Retaining wall active earth pressure Oscillation and quasi-periodicity Gradient theory
原文传递
Effect of current on the microstructure and performance of (Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) thermoelectric material via field activated and pressure assisted sintering
20
作者 陈瑞雪 孟庆森 +1 位作者 樊文浩 王忠 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第7期9-13,共5页
(Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) thermoelectric material was sintered via a field activated and pressure assisted sintering(FAPAS) process.By applying different current intensity(0,60,320 A/cm^2) in the si... (Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) thermoelectric material was sintered via a field activated and pressure assisted sintering(FAPAS) process.By applying different current intensity(0,60,320 A/cm^2) in the sintering process,the effects of electric current on the microstructure and thermoelectric performance were investigated.This demonstrated that the application of electric current in the sintering process could significantly improve the uniformity and density of(Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) samples.When the current intensity was raised to 320 A/cm^2,the preferred orientation of grains was observed.Moreover,positive effects on the thermoelectric performance of applying electric current in the sintering process were also confirmed.An increase of 0.02 and 0.11 in the maximum figure of merit ZT value could be acquired by applying current of 60 and 320 A/cm^2,respectively. 展开更多
关键词 thermoelectric material (Bi_2Te_3)_(0.2)(Sb_2Te_3)_(0.8) microstructure performance CURRENT field activated and pressure assisted sintering
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部