The central nervous system has a very high energy requirement. Accord- ingly, despite representing only 2% of the body's mass, the brain uses 20% of the total oxygen consumption. Importantly, because most of this ene...The central nervous system has a very high energy requirement. Accord- ingly, despite representing only 2% of the body's mass, the brain uses 20% of the total oxygen consumption. Importantly, because most of this energy is used to maintain synaptic activity, even a mild decrease in its supply to the brain has deleterious implications for synaptic function.展开更多
Both bone morphogenetic protein 2(BMP2) and the wingless-type MMTV integration site(WNT)/p-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis.Cross-talk between BMP2 ...Both bone morphogenetic protein 2(BMP2) and the wingless-type MMTV integration site(WNT)/p-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis.Cross-talk between BMP2 and WNT/p-catenin in osteoblast differentiation and bone formation has been identified.However,the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown.Here,we demonstrate that BMP2 promotes the differentiation of human dental pulp cells(HDPCs) by activating WNT/p-catenin signalling,which is further mediated by p38mitogen-activated protein kinase(MAPK) in vitro.BMP2 stimulation upregulated the expression of p-catenin in HDPCs,which was abolished by SB203580 but not by Noggin or LDN193189.Furthermore,BMP2 enhanced cell differentiation,which was not fully inhibited by Noggin or LDN193189.Instead,SB203580 partially blocked BMP2-induced p-catenin expression and cell differentiation.Taken together,these data suggest a possible mechanism by which the elevation of p-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway,which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.展开更多
基金supported in part by National Institutes of Health Grants NS-091201(to MY)and NS-079331(to MY)VA MERIT Award IO1BX003441(to MY)
文摘The central nervous system has a very high energy requirement. Accord- ingly, despite representing only 2% of the body's mass, the brain uses 20% of the total oxygen consumption. Importantly, because most of this energy is used to maintain synaptic activity, even a mild decrease in its supply to the brain has deleterious implications for synaptic function.
基金supported by the National Nature Science Foundation of China(grant nos.81200759,81070801 and 813220170)the Innovative Research Team of the Education Department of Sichuan Province(13TD0038)+1 种基金the Sichuan Province Science and Technology Support Program(2012SZ0034)the Program of International Science and Technology Cooperation(2014DFA31990)
文摘Both bone morphogenetic protein 2(BMP2) and the wingless-type MMTV integration site(WNT)/p-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis.Cross-talk between BMP2 and WNT/p-catenin in osteoblast differentiation and bone formation has been identified.However,the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown.Here,we demonstrate that BMP2 promotes the differentiation of human dental pulp cells(HDPCs) by activating WNT/p-catenin signalling,which is further mediated by p38mitogen-activated protein kinase(MAPK) in vitro.BMP2 stimulation upregulated the expression of p-catenin in HDPCs,which was abolished by SB203580 but not by Noggin or LDN193189.Furthermore,BMP2 enhanced cell differentiation,which was not fully inhibited by Noggin or LDN193189.Instead,SB203580 partially blocked BMP2-induced p-catenin expression and cell differentiation.Taken together,these data suggest a possible mechanism by which the elevation of p-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway,which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.