In order to understand the effect of powders ground from reactive sandstone replacing cement on reducing or suppressing alkali-silica reaction(ASR), and to identify the mechanism of suppressing ASR by this powders, ...In order to understand the effect of powders ground from reactive sandstone replacing cement on reducing or suppressing alkali-silica reaction(ASR), and to identify the mechanism of suppressing ASR by this powders, mortar and paste containing reactive sandstone powders of four replacement levels ranging from 10wt% to 40wt% and four specific surfaces areas ranging from 210 m^2/kg to 860 m^2/kg were studied. The experimental results showed that incorporation of 40wt% reactive sandstone powders could suppress ASR effectively except for mortar containing reactive sandstone powders with specific surface area of 610 m^2/kg, which disagreed with the most results reported that the higher reactive powder specific surface area, the smaller ASR expansion. By means of fl ame photometry, Fourier transform infrared spectroscopy(FT-IR) and thermo gravimetric analysis(TG), the mechanism of reactive sandstone powders on reducing or suppressing ASR was soluble alkalis type of reactive sandstone powders and the competition of liberating and bonding alkali of cement paste containing reactive sandstone powders,when the ability of alkali bonding was greater than the ability of alkali liberation, ASR caused by reactive sandstone was supressed effectively.展开更多
The chemical compositions of the sludge after treatment are tested by fully chemical analysis techniques. Its crystalline phase structure changes of the sludge calcined at different temperature are characterized by XR...The chemical compositions of the sludge after treatment are tested by fully chemical analysis techniques. Its crystalline phase structure changes of the sludge calcined at different temperature are characterized by XRD method. Nitrogen gas isothermal adsorption method (77 K) is applied to measure the influences of ammonium bicarbonate on specific surface area and pore structure of activated alumina synthesized from waste aluminum sludge. The result shows that the amount of Al2O3 in the sludge accounts for more than 94%, and Na2Owt% in a 0.1-0.2% range. By calcining raw sludge at 600℃, monophase γ-Al2O3 is obtained. And this can satisfy the performance requirements of activated alumina adsorbent. The specific surface area of the specimen with NH4HCO3 added has expanded from 179 to 249 m^2/g and the pore volume from 0.25 to 1.11 cm^3/g as well as the average pore diameter from 5.6 to 17.8 nm. All these show that NH4HCO3 is an effective pore-expansion agent to remarkably improve the structure and performance of activated alumina synthesized from waste aluminum sludge.展开更多
基金Funded partly by the the National 973 Program of China(No.2013CB035901)the National Natural Science Foundation of China(No.51379163)
文摘In order to understand the effect of powders ground from reactive sandstone replacing cement on reducing or suppressing alkali-silica reaction(ASR), and to identify the mechanism of suppressing ASR by this powders, mortar and paste containing reactive sandstone powders of four replacement levels ranging from 10wt% to 40wt% and four specific surfaces areas ranging from 210 m^2/kg to 860 m^2/kg were studied. The experimental results showed that incorporation of 40wt% reactive sandstone powders could suppress ASR effectively except for mortar containing reactive sandstone powders with specific surface area of 610 m^2/kg, which disagreed with the most results reported that the higher reactive powder specific surface area, the smaller ASR expansion. By means of fl ame photometry, Fourier transform infrared spectroscopy(FT-IR) and thermo gravimetric analysis(TG), the mechanism of reactive sandstone powders on reducing or suppressing ASR was soluble alkalis type of reactive sandstone powders and the competition of liberating and bonding alkali of cement paste containing reactive sandstone powders,when the ability of alkali bonding was greater than the ability of alkali liberation, ASR caused by reactive sandstone was supressed effectively.
文摘The chemical compositions of the sludge after treatment are tested by fully chemical analysis techniques. Its crystalline phase structure changes of the sludge calcined at different temperature are characterized by XRD method. Nitrogen gas isothermal adsorption method (77 K) is applied to measure the influences of ammonium bicarbonate on specific surface area and pore structure of activated alumina synthesized from waste aluminum sludge. The result shows that the amount of Al2O3 in the sludge accounts for more than 94%, and Na2Owt% in a 0.1-0.2% range. By calcining raw sludge at 600℃, monophase γ-Al2O3 is obtained. And this can satisfy the performance requirements of activated alumina adsorbent. The specific surface area of the specimen with NH4HCO3 added has expanded from 179 to 249 m^2/g and the pore volume from 0.25 to 1.11 cm^3/g as well as the average pore diameter from 5.6 to 17.8 nm. All these show that NH4HCO3 is an effective pore-expansion agent to remarkably improve the structure and performance of activated alumina synthesized from waste aluminum sludge.