Scientists have long debated the relative importance of tropospheric photochemical production versus stratospheric influx as causes of the springtime tropospheric ozone maximum over northern mid-latitudes. This paper ...Scientists have long debated the relative importance of tropospheric photochemical production versus stratospheric influx as causes of the springtime tropospheric ozone maximum over northern mid-latitudes. This paper investigates whether or not stratospheric intrusion and photochemistry play a significant role in the springtime ozone maximum over Northeast Asia, where ozone measurements are sparse. We examine how tropospheric ozone seasonalities over Naha (26°N, 128°E), Kagoshima (31°N, 131°E), and Pohang (36°N, 129°E), which are located on the same meridional line, are related to the timing and location of the jet stream. The ozone seasonality shows a gradual increase from January to the maximum ozone month, which corresponds to April at Naha, May at Kagoshima, and June at Pohang. In order to examine the occurrence of stratospheric intrusion, we analyze a correlation between jet stream activity and tropospheric ozone seasonality. From these analyses, we did not find any favorable evidence supporting the hypothesis that the springtime enhancement may result from stratospheric intrusion. According to trajectory analysis for vertical and horizontal origins of the airmass, a gradual increasing tendency in ozone amounts from January until the onset of monsoon was similar to the increasing ozone formation tendency from winter to spring over China's Mainland, which has been observed during the build-up of tropospheric ozone over Central Europe in the winter-spring transition period due to photochemistry. Overall, the analyses suggest that photochemistry is the most important contributor to observed ozone seasonality over Northeast Asia.展开更多
Driven by the flourish of location-based services, trajectory search has received significant attentions in recent years. Different from existing studies that focus on searching trajectories with spatio-temporal infor...Driven by the flourish of location-based services, trajectory search has received significant attentions in recent years. Different from existing studies that focus on searching trajectories with spatio-temporal information and text de-scriptions, we study a novel problem of searching trajectories with spatial distance, activities, and rating scores. Given a query q with a threshold of distance, a set of activities, a start point S and a destination E, trip oriented search on activity trajectory (TOSAT) returns k trajectories that can cover the activities with the highest rating scores within the threshold of distance. In addition, we extend the query with an order, i.e., order-sensitive trip oriented search on activity trajectory (OTOSAT), which takes both the order of activities in a query q and the order of trajectories into consideration. It is very challenging to answer TOSAT and OTOSAT e?ciently due to the structural complexity of trajectory data with rating infor-mation. In order to tackle the problem e?ciently, we develop a hybrid index AC-tree to organize trajectories. Moreover, the optimized variant RAC+-tree and novel algorithms are introduced with the goal of achieving higher performance. Extensive experiments based on real trajectory datasets demonstrate that the proposed index structures and algorithms are capable of achieving high e?ciency and scalability.展开更多
基金supported by Research Agency for Climate Science funded by Korea Meteorological Administration(RACS 2010-1011)
文摘Scientists have long debated the relative importance of tropospheric photochemical production versus stratospheric influx as causes of the springtime tropospheric ozone maximum over northern mid-latitudes. This paper investigates whether or not stratospheric intrusion and photochemistry play a significant role in the springtime ozone maximum over Northeast Asia, where ozone measurements are sparse. We examine how tropospheric ozone seasonalities over Naha (26°N, 128°E), Kagoshima (31°N, 131°E), and Pohang (36°N, 129°E), which are located on the same meridional line, are related to the timing and location of the jet stream. The ozone seasonality shows a gradual increase from January to the maximum ozone month, which corresponds to April at Naha, May at Kagoshima, and June at Pohang. In order to examine the occurrence of stratospheric intrusion, we analyze a correlation between jet stream activity and tropospheric ozone seasonality. From these analyses, we did not find any favorable evidence supporting the hypothesis that the springtime enhancement may result from stratospheric intrusion. According to trajectory analysis for vertical and horizontal origins of the airmass, a gradual increasing tendency in ozone amounts from January until the onset of monsoon was similar to the increasing ozone formation tendency from winter to spring over China's Mainland, which has been observed during the build-up of tropospheric ozone over Central Europe in the winter-spring transition period due to photochemistry. Overall, the analyses suggest that photochemistry is the most important contributor to observed ozone seasonality over Northeast Asia.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 61073061, 61303019, 61003044, 61232006, 61472263, 61402312, and 61402313, the Doctoral Fund of Ministry of Education of China under Grant No. 20133201120012, and Jiangsu Provincial Department of Education under Grant No. 12KJB520017.
文摘Driven by the flourish of location-based services, trajectory search has received significant attentions in recent years. Different from existing studies that focus on searching trajectories with spatio-temporal information and text de-scriptions, we study a novel problem of searching trajectories with spatial distance, activities, and rating scores. Given a query q with a threshold of distance, a set of activities, a start point S and a destination E, trip oriented search on activity trajectory (TOSAT) returns k trajectories that can cover the activities with the highest rating scores within the threshold of distance. In addition, we extend the query with an order, i.e., order-sensitive trip oriented search on activity trajectory (OTOSAT), which takes both the order of activities in a query q and the order of trajectories into consideration. It is very challenging to answer TOSAT and OTOSAT e?ciently due to the structural complexity of trajectory data with rating infor-mation. In order to tackle the problem e?ciently, we develop a hybrid index AC-tree to organize trajectories. Moreover, the optimized variant RAC+-tree and novel algorithms are introduced with the goal of achieving higher performance. Extensive experiments based on real trajectory datasets demonstrate that the proposed index structures and algorithms are capable of achieving high e?ciency and scalability.