The bi-functional carbazole-based photorefractive polyphosphazenes with different content of C_(60)-doped were fabricated. The glass transition temperature(T_g) of these polymer composite materials was determined ...The bi-functional carbazole-based photorefractive polyphosphazenes with different content of C_(60)-doped were fabricated. The glass transition temperature(T_g) of these polymer composite materials was determined using a differential scanning calorimetric(DSC) method. According to the DSC measurement results with different heating rates, the variation of T_g and the active energy of glass transition(E_g) were analyzed in detail. The analysis results indicate that the transition region shifts to higher temperatures with increasing heating rate, and C_(60) content(below 1.0 wt%) can influence the T_g of photorefractive polyphosphazenes. The T_g first increases and then decreases with the C_(60) content(below 1.0 wt%). The probable causes of the influence of C_(60) on T_g was proposed.展开更多
Increasing calls for zero-carbon cities invite transformative solutions for people and places within our cities around the world. Key to the transformation is cities and regions shifting in mobility away from fossil-f...Increasing calls for zero-carbon cities invite transformative solutions for people and places within our cities around the world. Key to the transformation is cities and regions shifting in mobility away from fossil-fuel based car-oriented solutions. The paper investigates a range of case studies where “tram-based boulevards” have been planned or implemented to provide such opportunities. The case studies share a common broader policy objective: to transform the car-oriented or car-saturated areas to an intensified urban template based on a critical presence of dedicated mid-tier transit infrastructure and active transport. “Trams”, or mid-tier, mid-capacity transit when combined with Transit oriented development (TOD) along whole corridors can provide transformative pathways towards zero-carbon outcomes as well as multiple, strong urban benefits. However, many successful or instructive examples of this practice from non-English speaking countries, particularly in Europe, are underdocumented in the international literature. The paper addresses this gap by investigating opportunities and challenges evident in a range of European case studies. These are explored for insight towards policy learning particularly in New World cities seeking to transform into a zero-carbon and more transit-oriented template: How can decision-makers avoid repeating the identified pitfalls, and instead focus on emulating the successful approaches and outcomes? We conclude the need for recognition of the inherent synergies between transport and land use settings in any endeavour, and their translation into policy priorities in both fields of planning. We also conclude the importance of decision makers proactively identifying and critically appraising specific opportunities for change, concerning funding, technology, public opinion, stakeholder alliances or market dynamics, and capitalising on them at suitable moments in time.展开更多
The dynamic mechanical behavior of a new kind of flexible epoxy FE-1,which was crosslinked under four different thermal crosslink conditions,was studied.Dynamic mechanical measurement was carried out from 10 ℃ to 120...The dynamic mechanical behavior of a new kind of flexible epoxy FE-1,which was crosslinked under four different thermal crosslink conditions,was studied.Dynamic mechanical measurement was carried out from 10 ℃ to 120 ℃,and loss factor,tan δ and the storagemodulus as functions of temperature were presented under five different frequencies of 0.1 Hz, 1 Hz,5 Hz,50 Hz and 100 Hz. The experimental results show that temperature has dramatic effects on the dynamic mechanical behavior of flexible epoxy. Compared with other common available epoxy, the flexible epoxy has higher loss factor over broad frequency and common temperature range. Activation energy corresponding to glass transition process of FE-1 was calculated from the temperature corresponding to tan 8 rna~ values, obtained at different measurement frequencies. The maximum value of loss factor is 0.75 and the Tg varies from 6 ℃ to 50 ℃, indicating the flexible epoxy can be used as damping polymer materials at common temperature or frequency range.展开更多
The fault activation (fault on) interrupts the enduring fault locking (fault off) and marks the end of a seismic cycle in which the brittle-ductile transition (BDT) acts as a sort of switch. We suggest that the ...The fault activation (fault on) interrupts the enduring fault locking (fault off) and marks the end of a seismic cycle in which the brittle-ductile transition (BDT) acts as a sort of switch. We suggest that the fluid flow rates differ during the different periods of the seismic cycle (interseismic, pre-seismic, coseismic and post-seismic) and in particular as a function of the tectonic style. Regional examples indicate that tectonic-related fluids anomalies depend on the stage of the tectonic cycle and the tectonic style. Although it is difficult to model an increasing permeability with depth and several BDT transitions plus independent acquicludes may occur in the crust, we devised the simplest numerical model of a fault constantly shearing in the ductile deeper crust while being locked in the brittle shallow layer, with variable homogeneous permeabilities. The results indicate different behaviors in the three main tectonic settings. In tensional tectonics, a stretched band antithetic to the normal fault forms above the BDT during the interseismic period. Fractures close and fluids are expellecl during the coseismic stage. The mechanism reverses in compressional tectonics. During the interseismic stage, an over-compressed band forms above the BDT. The band dilates while rebounding in the coseismic stage and attracts fluids locally. At the tip lines along strike-slip faults, two couples of subvertical bancls show different behavior, one in dilationJcompression and one in compressionJdilation. This deformation pattern inverts during the coseismic stage. Sometimes a pre-seismic stage in which fluids start moving may be observed and could potentially become a precursor.展开更多
Vanadium dioxide (VO2) is a phase transition material which undergoes a reversible metal-insulator transition (MIT) when triggered by thermal, photo, electrical, and even stress. The huge conduction change of VO2 ...Vanadium dioxide (VO2) is a phase transition material which undergoes a reversible metal-insulator transition (MIT) when triggered by thermal, photo, electrical, and even stress. The huge conduction change of VO2 renders it a promising material for terahertz (THz) manipulation. In this paper, some interesting works concerning the growth and characteristics of the VO2 film are selectively reviewed. A switching of THz radiation by photo-driven VO2 film is demonstrated. Experiments indicate an ultrafast optical switching to THz transmission within 8 picoseconds, and a switching ratio reaches to over 80%during a wide frequency range from 0.3 THz to 2.5 THz.展开更多
Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the react...Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the reactants, intermediates, products and transition states of the triplet ground potential energy surfaces of [Ni, O, C2, H4] were obtained at the B3LYP/6-311++G(d,p) levels in C,H,O atoms and B3LYP/ Lanl2 dz in Ni atom. It was found through our calculations that the decabonylation of acetaldehyde contains four steps including encounter complexation, C-C activation, aldehyde H-shift and nonreactive dissociation. The results revealed that C-C activation induced by Ni L2(L=SO3CH3) led to the decarbonylation of acetaldehyde.展开更多
Advances in VLSI technology have enabled the implementation of complex digital circuits in a single chip, reducing system size and power consumption. In deep submicron low power CMOS VLSI design, the main cause of ene...Advances in VLSI technology have enabled the implementation of complex digital circuits in a single chip, reducing system size and power consumption. In deep submicron low power CMOS VLSI design, the main cause of energy dissipation is charging and discharging of internal node capacitances due to transition activity. Transition activity is one of the major factors that also affect the dynamic power dissipation. This paper proposes power reduction analyzed through algorithm and logic circuit levels. In algorithm level the key aspect of reducing power dissipation is by minimizing transition activity and is achieved by introducing a data coding technique. So a novel multi coding technique is introduced to improve the efficiency of transition activity up to 52.3% on the bus lines, which will automatically reduce the dynamic power dissipation. In addition, 1 bit full adders are introduced in the Hamming distance estimator block, which reduces the device count. This coding method is implemented using Verilog HDL. The overall performance is analyzed by using Modelsim and Xilinx Tools. In total 38.2% power saving capability is achieved compared to other existing methods.展开更多
Highly dispersed α-Fe_2O_3/NaY,NiO/NaY,and CuO/NaY catalyst systems were pre- pared by impregnation method.Dispersion thresholds of the transition metal oxides on NaY' zeolite were determined by XRD phase analysi...Highly dispersed α-Fe_2O_3/NaY,NiO/NaY,and CuO/NaY catalyst systems were pre- pared by impregnation method.Dispersion thresholds of the transition metal oxides on NaY' zeolite were determined by XRD phase analysis.The dispersion capacities of the transition metal oxides on NaY zeolite are much lower than that estimated on the basis of a closed packed monolayer in the micro pores.The catalytic activity and selectivity of the highly dispersed oxide catalyst systems for ethylben- zene and cyclohexane dehydrogenation reactions were reported.展开更多
基金the National Science Foundation of China(No.11174258)the Development Foundation of China Academy of Engineering Physics(No.2013A0302016)
文摘The bi-functional carbazole-based photorefractive polyphosphazenes with different content of C_(60)-doped were fabricated. The glass transition temperature(T_g) of these polymer composite materials was determined using a differential scanning calorimetric(DSC) method. According to the DSC measurement results with different heating rates, the variation of T_g and the active energy of glass transition(E_g) were analyzed in detail. The analysis results indicate that the transition region shifts to higher temperatures with increasing heating rate, and C_(60) content(below 1.0 wt%) can influence the T_g of photorefractive polyphosphazenes. The T_g first increases and then decreases with the C_(60) content(below 1.0 wt%). The probable causes of the influence of C_(60) on T_g was proposed.
文摘Increasing calls for zero-carbon cities invite transformative solutions for people and places within our cities around the world. Key to the transformation is cities and regions shifting in mobility away from fossil-fuel based car-oriented solutions. The paper investigates a range of case studies where “tram-based boulevards” have been planned or implemented to provide such opportunities. The case studies share a common broader policy objective: to transform the car-oriented or car-saturated areas to an intensified urban template based on a critical presence of dedicated mid-tier transit infrastructure and active transport. “Trams”, or mid-tier, mid-capacity transit when combined with Transit oriented development (TOD) along whole corridors can provide transformative pathways towards zero-carbon outcomes as well as multiple, strong urban benefits. However, many successful or instructive examples of this practice from non-English speaking countries, particularly in Europe, are underdocumented in the international literature. The paper addresses this gap by investigating opportunities and challenges evident in a range of European case studies. These are explored for insight towards policy learning particularly in New World cities seeking to transform into a zero-carbon and more transit-oriented template: How can decision-makers avoid repeating the identified pitfalls, and instead focus on emulating the successful approaches and outcomes? We conclude the need for recognition of the inherent synergies between transport and land use settings in any endeavour, and their translation into policy priorities in both fields of planning. We also conclude the importance of decision makers proactively identifying and critically appraising specific opportunities for change, concerning funding, technology, public opinion, stakeholder alliances or market dynamics, and capitalising on them at suitable moments in time.
基金Funded by the Defense Pre-Research Foundation of the "Eleventh Five-Year-Plan" of China (No.51312040404)
文摘The dynamic mechanical behavior of a new kind of flexible epoxy FE-1,which was crosslinked under four different thermal crosslink conditions,was studied.Dynamic mechanical measurement was carried out from 10 ℃ to 120 ℃,and loss factor,tan δ and the storagemodulus as functions of temperature were presented under five different frequencies of 0.1 Hz, 1 Hz,5 Hz,50 Hz and 100 Hz. The experimental results show that temperature has dramatic effects on the dynamic mechanical behavior of flexible epoxy. Compared with other common available epoxy, the flexible epoxy has higher loss factor over broad frequency and common temperature range. Activation energy corresponding to glass transition process of FE-1 was calculated from the temperature corresponding to tan 8 rna~ values, obtained at different measurement frequencies. The maximum value of loss factor is 0.75 and the Tg varies from 6 ℃ to 50 ℃, indicating the flexible epoxy can be used as damping polymer materials at common temperature or frequency range.
基金funding provided by the Italian Presidenza del Consiglio dei Ministri-Dipartimento della Protezione Civile (DPC) within the INGV-DPC 2007-2009 agreement (Project S1)Sapienza UniversityCNR-Eurocores-TopoEurope
文摘The fault activation (fault on) interrupts the enduring fault locking (fault off) and marks the end of a seismic cycle in which the brittle-ductile transition (BDT) acts as a sort of switch. We suggest that the fluid flow rates differ during the different periods of the seismic cycle (interseismic, pre-seismic, coseismic and post-seismic) and in particular as a function of the tectonic style. Regional examples indicate that tectonic-related fluids anomalies depend on the stage of the tectonic cycle and the tectonic style. Although it is difficult to model an increasing permeability with depth and several BDT transitions plus independent acquicludes may occur in the crust, we devised the simplest numerical model of a fault constantly shearing in the ductile deeper crust while being locked in the brittle shallow layer, with variable homogeneous permeabilities. The results indicate different behaviors in the three main tectonic settings. In tensional tectonics, a stretched band antithetic to the normal fault forms above the BDT during the interseismic period. Fractures close and fluids are expellecl during the coseismic stage. The mechanism reverses in compressional tectonics. During the interseismic stage, an over-compressed band forms above the BDT. The band dilates while rebounding in the coseismic stage and attracts fluids locally. At the tip lines along strike-slip faults, two couples of subvertical bancls show different behavior, one in dilationJcompression and one in compressionJdilation. This deformation pattern inverts during the coseismic stage. Sometimes a pre-seismic stage in which fluids start moving may be observed and could potentially become a precursor.
基金supported by the National Natural Science Foundation of China under Grant No.61131005Keygrant Project of Chinese Ministry of Education under Grant No.313013+1 种基金New Century Excellent Talent Foundation under Grant No.NCET-11-0068Sichuan Youth S.&T.Foundation under Grant No.2011JQ0001
文摘Vanadium dioxide (VO2) is a phase transition material which undergoes a reversible metal-insulator transition (MIT) when triggered by thermal, photo, electrical, and even stress. The huge conduction change of VO2 renders it a promising material for terahertz (THz) manipulation. In this paper, some interesting works concerning the growth and characteristics of the VO2 film are selectively reviewed. A switching of THz radiation by photo-driven VO2 film is demonstrated. Experiments indicate an ultrafast optical switching to THz transmission within 8 picoseconds, and a switching ratio reaches to over 80%during a wide frequency range from 0.3 THz to 2.5 THz.
基金Funded by the National Natural Science Foundation of China(No.51174179)
文摘Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the reactants, intermediates, products and transition states of the triplet ground potential energy surfaces of [Ni, O, C2, H4] were obtained at the B3LYP/6-311++G(d,p) levels in C,H,O atoms and B3LYP/ Lanl2 dz in Ni atom. It was found through our calculations that the decabonylation of acetaldehyde contains four steps including encounter complexation, C-C activation, aldehyde H-shift and nonreactive dissociation. The results revealed that C-C activation induced by Ni L2(L=SO3CH3) led to the decarbonylation of acetaldehyde.
文摘Advances in VLSI technology have enabled the implementation of complex digital circuits in a single chip, reducing system size and power consumption. In deep submicron low power CMOS VLSI design, the main cause of energy dissipation is charging and discharging of internal node capacitances due to transition activity. Transition activity is one of the major factors that also affect the dynamic power dissipation. This paper proposes power reduction analyzed through algorithm and logic circuit levels. In algorithm level the key aspect of reducing power dissipation is by minimizing transition activity and is achieved by introducing a data coding technique. So a novel multi coding technique is introduced to improve the efficiency of transition activity up to 52.3% on the bus lines, which will automatically reduce the dynamic power dissipation. In addition, 1 bit full adders are introduced in the Hamming distance estimator block, which reduces the device count. This coding method is implemented using Verilog HDL. The overall performance is analyzed by using Modelsim and Xilinx Tools. In total 38.2% power saving capability is achieved compared to other existing methods.
基金the National Natural Science Foundation of China
文摘Highly dispersed α-Fe_2O_3/NaY,NiO/NaY,and CuO/NaY catalyst systems were pre- pared by impregnation method.Dispersion thresholds of the transition metal oxides on NaY' zeolite were determined by XRD phase analysis.The dispersion capacities of the transition metal oxides on NaY zeolite are much lower than that estimated on the basis of a closed packed monolayer in the micro pores.The catalytic activity and selectivity of the highly dispersed oxide catalyst systems for ethylben- zene and cyclohexane dehydrogenation reactions were reported.