期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Active suspension with optimal control based on a full vehicle model
1
作者 张军伟 陈思忠 赵玉壮 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期81-90,共10页
The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic... The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic optimal control theory,the optimal gains for the control system are figured out.So an optimal controller is developed and implemented using Matlab/Simulink,where the Riccati equation with coupling terms is deduced using the Hamilton equation.The all state feedback is chosen for the controller.The gains for all vehicle variables are traded off so that majority of indexes were up to optimal.The active suspension with optimal control is simulated in frequency domain and time domain separately,and compared with a passive suspension.Throughout all the simulation results,the optimal controller developed in this paper works well in the majority of instances.In all,the comfort and ride performance of the vehicle are improved under the active suspension with optimal control. 展开更多
关键词 active suspension full vehicle model optimal control frequencydomain time domain
下载PDF
Finite Frequency Fuzzy H∞Control for Uncertain Active Suspension Systems With Sensor Failure 被引量:4
2
作者 Zhenxing Zhang Hongyi Li +1 位作者 Chengwei Wu Qi Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第4期777-786,共10页
This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established f... This paper investigates the problem of finite frequency fuzzy H_∞ control for uncertain active vehicle suspension systems, in which sensor failure is taken into account. TakagiSugeno(T-S) fuzzy model is established for considered suspension systems. In order to describe the sensor fault effectively, a corresponding model is introduced. A vital performance index,H_∞ performance, is utilized to measure the drive comfort. In the framework of Kalman-Yakubovich-Popov theory, the H_∞ norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level. Meanwhile, three suspension constrained requirements, i.e., ride comfort level, manipulation stability,suspension deflection are also guaranteed. Furthermore, sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems. Finally, the proposed control scheme is applied to a quarter-vehicle active suspension, and simulation results are given to illustrate the effectiveness of the proposed approach. 展开更多
关键词 active vehicle suspension systems finite frequency control sensor failure Takagi-Sugeno fuzzy model
下载PDF
Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems
3
作者 John E. D. EKORU Jimoh O. PEDRO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第6期401-416,共16页
This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS). This method uses an inner PID hydraulic actuator force ... This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS). This method uses an inner PID hydraulic actuator force control loop, in combination with an outer PID suspension travel control loop, to control a nonlinear half-car AVSS. Robustness to model uncertainty in the form of variation in suspension damping is tested, comparing performance of the AVSS with a passive vehicle suspension system (PVSS), with similar model parameters. Spectral analysis of suspension system model output data, obtained by performing a road input disturbance frequency sweep, provides frequency response plots for both nonlinear vehicle suspension systems and time domain vehicle responses to a sinusoidal road input disturbance on a smooth road. The results show the greater robustness of the AVSS over the PVSS to parametric uncertainty in the frequency and time domains. 展开更多
关键词 Force control Proportional-integral-derivative (PID) control Nonlinear half-car active vehicle suspension system (AVSS) Hydraulic actuator dynamics Model uncertainty
原文传递
Dynamic Event-triggered Control and Estimation: A Survey 被引量:4
4
作者 Xiaohua Ge Qing-Long Han +1 位作者 Xian-Ming Zhang Derui Ding 《International Journal of Automation and computing》 EI CSCD 2021年第6期857-886,共30页
The efficient utilization of computation and communication resources became a critical design issue in a wide range of networked systems due to the finite computation and processing capabilities of system components(e... The efficient utilization of computation and communication resources became a critical design issue in a wide range of networked systems due to the finite computation and processing capabilities of system components(e.g., sensor, controller) and shared network bandwidth. Event-triggered mechanisms(ETMs) are regarded as a major paradigm shift in resource-constrained applications compared to the classical time-triggered mechanisms, which allows a trade-off to be achieved between desired control/estimation performance and improved resource efficiency. In recent years, dynamic event-triggered mechanisms(DETMs) are emerging as a promising enabler to fulfill more resource-efficient and flexible design requirements. This paper provides a comprehensive review of the latest developments in dynamic event-triggered control and estimation for networked systems. Firstly, a unified event-triggered control and estimation framework is established, which empowers several fundamental issues associated with the construction and implementation of the desired ETM and controller/estimator to be systematically investigated. Secondly, the motivations of DETMs and their main features and benefits are outlined. Then, two typical classes of DETMs based on auxiliary dynamic variables(ADVs) and dynamic threshold parameters(DTPs) are elaborated. In addition, the main techniques of constructing ADVs and DTPs are classified, and their corresponding analysis and design methods are discussed. Furthermore, three application examples are provided to evaluate different ETMs and verify how and under what conditions DETMs are superior to their static and periodic counterparts. Finally, several challenging issues are envisioned to direct the future research. 展开更多
关键词 Networked systems dynamic event-triggered control dynamic event-triggered estimation dynamic event-triggered mechanisms vehicle active suspension system water distribution and supply system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部