This work dealt with the computation of the mean activity coefficients of rare-earth halide aqueous solutions at 25℃, by means of the Quasi Random Lattice(QRL) model. The osmotic coefficients were then calculated c...This work dealt with the computation of the mean activity coefficients of rare-earth halide aqueous solutions at 25℃, by means of the Quasi Random Lattice(QRL) model. The osmotic coefficients were then calculated consistently, through the integration of the Gibbs-Duhem equation. Using of QRL was mainly motivated by its dependence on one parameter, given in the form of an electrolyte-dependent concentration, which was also the highest concentration at which the model could be applied. For all the electrolyte solutions here considered, this parameter was experimentally known and ranged from 1.5 to 2.2 mol/kg, at 25 ℃.Accordingly, rare- earth halide concentrations from strong dilution up to 2 mol/kg about could be considered without need for best-fit treatment in order to compute their osmotic and mean activity coefficients. The experimental knowledge about the parameter was an advantageous feature of QRL compared to existing literature models. Following a trend already observed with low charge electrolytes,a satisfactory agreement was obtained with the experimental values for all the investigated rare-earth chlorides and bromides. For the sake of compactness, in this work the considered rare-earth halides were all belonging to the P63/m space group in their crystalline(anhydrous) form.展开更多
The density functional theory (DFT) and density functional perturbation theory (DFPT) within the quasi-harmonic ap-proximation were employed to investigate the activity coefficient of Y in dilute Fe-Y solid soluti...The density functional theory (DFT) and density functional perturbation theory (DFPT) within the quasi-harmonic ap-proximation were employed to investigate the activity coefficient of Y in dilute Fe-Y solid solution. The ground states of Fe-Y com-pounds and the thermodynamic properties of bcc Fe were calculated, and the stable and metastable structures of Fe-Y compounds were predicted as well. With the temperature increasing, the Y activity coefficient in bcc Fe matrix increased rapidly, and the interac-tion between Y and Fe became more favorable. Based on the calculated thermodynamic properties, the solubility of Y in bcc Fe ma-trix as a function of temperature was predicted, and compared with the experimental data.展开更多
Adding rare earth into permeating agent has an obvious catalytic effect on vanadizing on steel surface, and the vanadizing rate can increase about 30%~40%. The case depth ( x ) of the samples which have undergone d...Adding rare earth into permeating agent has an obvious catalytic effect on vanadizing on steel surface, and the vanadizing rate can increase about 30%~40%. The case depth ( x ) of the samples which have undergone different periods of vanadizing time at 950 ℃ was measured. These depth values ( x ) and its corresponded time ( t ) were substituded into the experimental formula, i.e., x n=Kt (ln x=(1/n) ln K+(1/n) ln t ), and were processed by mono linear regression. It is found that x and t have the relationship of x 2=Kt . Addition of rare earth can promote reaction of the permeating agent, and increase vanadium potential of the agent. Rare earth, as a strong reductant, makes the oxide on the steel surface reduced, and thus activates the steel surface. Permeating of rare earth into steel and the VC layer intensifies the crystal fault density, and, together with its excellent chemical activation, makes carbon atoms diffuse easily. These functions of rare earth can decrease the diffusion activation energy of the carbon atoms, and therefore has catalytic effect on permeation.展开更多
A new process was proposed to extract rare earth elements(REEs),Li and F from electrolytic slag of rare earth molten salt by synergistic roasting and acid leaching.Firstly,the thermodynamic analysis of roasting reacti...A new process was proposed to extract rare earth elements(REEs),Li and F from electrolytic slag of rare earth molten salt by synergistic roasting and acid leaching.Firstly,the thermodynamic analysis of roasting reaction was carried out,then the effects of roasting factors on leaching REEs,Li and F in slag were investigated.In additions,the mineral phase and morphology of molten salt slag,roasting slag and acid leaching slag were characterized,and the migration mechanism of REES,Li and F minerals in roasting and leaching process was analyzed.The results show that the synergistic roasting and activation of molten salt slag by CaO and Al_(2)(SO_(4))_(3)are thermodynamically feasible.The optimum roasting conditions are as follows:molten salt slag of 20 g,Al_(2)(SO_(4))_(3)of 31.25 g and CaO of 6.25 g,roasting temperature of 1173.15 K and reaction time of 2 h,under this condition,the leaching rates of Nd,Pr,Gd,Li and F are 92.47%,91.56%,91.08%,96.69%and 96.8%,respectively.X-ray powder diffraction(XRD)and scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDS)analysis show that the rare earth fluoride(REF3)in molten salt slag transforms into soluble rare earth oxide(REO)after roasting and activation.After leaching,the leaching residue is mainly strip CaSO4,indicating that REES,Li and F can be fully extracted from molten salt slag.展开更多
Four crystals with the general formula of A3BGa3Si2O14 (A = Ca^2+, Sr^2+; B=Nb^5+ , Ta^5+) grown by using the Czoehralsky technique were reported. They are all uniaxial and belong to 32 point group. Their transm...Four crystals with the general formula of A3BGa3Si2O14 (A = Ca^2+, Sr^2+; B=Nb^5+ , Ta^5+) grown by using the Czoehralsky technique were reported. They are all uniaxial and belong to 32 point group. Their transmission, rotatory angle and specific rotation dispersion were investigated by speetrophotometer and compared with LGS. The transmission spectra show that they are transparent in the visible wavelength region beyond 294 nm and infrared region, and their transmission are all larger than that of LGS.The transmission spectra between parallel polasizers show that they have large optical activities which are larger than that of LGS. Of the four crystals, Sr3NbGa3Si2O14 has the largest optical activity : 240.75 (°)·mm^-1 at 0.30 μm wavelength, 34.73 (°) ·mm^-1 at 0. 633 μm wavelength. The Bohzmann's coefficients of these crystals were calculated, which were in good agreement with earlier measurement in other reference.展开更多
Neodymium oxyfluoride has received much attention in the fields of anionic solid electrolytes.luminescent,catalytic and magnetic materials because of its structure combined advantages of rareearth cations with F^(-)an...Neodymium oxyfluoride has received much attention in the fields of anionic solid electrolytes.luminescent,catalytic and magnetic materials because of its structure combined advantages of rareearth cations with F^(-)and O_(2)^(-)anions.In this work,neodynium oxyfluoride was synthesized by the reaction between neodymium oxide and four fluoride media with different fluoride ion activities.The synthesis processes in molten LiF-CaF_(2)-NdF_(3),LiF-NdF_(3),NaF-CaF_(2)-NdF_(3)and NaF-KF-NdF_(3)are observed in situ by a confocal scanning laser microscope.The expansion of neodymium oxide particle is observed in the LiF-CaF_(2)-NdF_(3),LiF-NdF_(3),and NaF-KF-NdF_(3)melts,and the growth of needle crystals on neodymium oxide particle is clearly observed in molten NaF-CaF_(2)-NdF_(3).Based on scanning electron microscopy(SEM)-energy dispersive X-ray spectroscopy(EDS)and X-ray diffraction(XRD)analyses of products,neodynium oxyfluoride was successfully synthesized in the four fluoride media.The neodynium oxyfluoride generated in the LiF-CaF_(2)-NdF_(3),LiF-NdF_(3),and NaF-KF-NdF_(3)melts is a tetragonal structure.However,in molten NaF-CaF_(2)-NdF_(3),neodynium oxyfluoride with a rhombohedral structure is formed.It is suggested that the substitution of Na(Ⅰ)and Ca(Ⅱ)for Nd(Ⅲ)can transform NdOF from tetragonal structure to rhombohedral structure.The growth rate of needle crystals generated in molten NaF-CaF_(2)-NdF_(3)was calculated based on the result of a confocal scanning laser microscope,and it is found that the reaction kinetics of crystal formation is zero-order reaction.The effect of fluoride media on the structure and morphology of formed NdOF were evaluated by XRD,X-ray photoelectron spectroscopy(XPS)and SEM.The neodymium oxyfluoride prepared in the fluoride media with high fluoride ion activity has low binding energy of F 1 s.The ratio of adsorbed oxygen to lattice oxygen for neodymium oxyfluoride prepared in molten LiF-NdF_(3)is larger than those in the other three fluoride media,so it can have better catalytic performance.展开更多
文摘This work dealt with the computation of the mean activity coefficients of rare-earth halide aqueous solutions at 25℃, by means of the Quasi Random Lattice(QRL) model. The osmotic coefficients were then calculated consistently, through the integration of the Gibbs-Duhem equation. Using of QRL was mainly motivated by its dependence on one parameter, given in the form of an electrolyte-dependent concentration, which was also the highest concentration at which the model could be applied. For all the electrolyte solutions here considered, this parameter was experimentally known and ranged from 1.5 to 2.2 mol/kg, at 25 ℃.Accordingly, rare- earth halide concentrations from strong dilution up to 2 mol/kg about could be considered without need for best-fit treatment in order to compute their osmotic and mean activity coefficients. The experimental knowledge about the parameter was an advantageous feature of QRL compared to existing literature models. Following a trend already observed with low charge electrolytes,a satisfactory agreement was obtained with the experimental values for all the investigated rare-earth chlorides and bromides. For the sake of compactness, in this work the considered rare-earth halides were all belonging to the P63/m space group in their crystalline(anhydrous) form.
基金supported by the National Natural Science Foundation of China(51101083)
文摘The density functional theory (DFT) and density functional perturbation theory (DFPT) within the quasi-harmonic ap-proximation were employed to investigate the activity coefficient of Y in dilute Fe-Y solid solution. The ground states of Fe-Y com-pounds and the thermodynamic properties of bcc Fe were calculated, and the stable and metastable structures of Fe-Y compounds were predicted as well. With the temperature increasing, the Y activity coefficient in bcc Fe matrix increased rapidly, and the interac-tion between Y and Fe became more favorable. Based on the calculated thermodynamic properties, the solubility of Y in bcc Fe ma-trix as a function of temperature was predicted, and compared with the experimental data.
文摘Adding rare earth into permeating agent has an obvious catalytic effect on vanadizing on steel surface, and the vanadizing rate can increase about 30%~40%. The case depth ( x ) of the samples which have undergone different periods of vanadizing time at 950 ℃ was measured. These depth values ( x ) and its corresponded time ( t ) were substituded into the experimental formula, i.e., x n=Kt (ln x=(1/n) ln K+(1/n) ln t ), and were processed by mono linear regression. It is found that x and t have the relationship of x 2=Kt . Addition of rare earth can promote reaction of the permeating agent, and increase vanadium potential of the agent. Rare earth, as a strong reductant, makes the oxide on the steel surface reduced, and thus activates the steel surface. Permeating of rare earth into steel and the VC layer intensifies the crystal fault density, and, together with its excellent chemical activation, makes carbon atoms diffuse easily. These functions of rare earth can decrease the diffusion activation energy of the carbon atoms, and therefore has catalytic effect on permeation.
基金Project supported by the National Key R&D Program"Solid Waste Recycling"Key Project(2020YFC1909000,2020YFC1909003)the National Natural Science Foundation of China(52064019)the Key Fund of Jiangxi Provincial Department of Science and Technology(2019ACBL20015)。
文摘A new process was proposed to extract rare earth elements(REEs),Li and F from electrolytic slag of rare earth molten salt by synergistic roasting and acid leaching.Firstly,the thermodynamic analysis of roasting reaction was carried out,then the effects of roasting factors on leaching REEs,Li and F in slag were investigated.In additions,the mineral phase and morphology of molten salt slag,roasting slag and acid leaching slag were characterized,and the migration mechanism of REES,Li and F minerals in roasting and leaching process was analyzed.The results show that the synergistic roasting and activation of molten salt slag by CaO and Al_(2)(SO_(4))_(3)are thermodynamically feasible.The optimum roasting conditions are as follows:molten salt slag of 20 g,Al_(2)(SO_(4))_(3)of 31.25 g and CaO of 6.25 g,roasting temperature of 1173.15 K and reaction time of 2 h,under this condition,the leaching rates of Nd,Pr,Gd,Li and F are 92.47%,91.56%,91.08%,96.69%and 96.8%,respectively.X-ray powder diffraction(XRD)and scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDS)analysis show that the rare earth fluoride(REF3)in molten salt slag transforms into soluble rare earth oxide(REO)after roasting and activation.After leaching,the leaching residue is mainly strip CaSO4,indicating that REES,Li and F can be fully extracted from molten salt slag.
文摘Four crystals with the general formula of A3BGa3Si2O14 (A = Ca^2+, Sr^2+; B=Nb^5+ , Ta^5+) grown by using the Czoehralsky technique were reported. They are all uniaxial and belong to 32 point group. Their transmission, rotatory angle and specific rotation dispersion were investigated by speetrophotometer and compared with LGS. The transmission spectra show that they are transparent in the visible wavelength region beyond 294 nm and infrared region, and their transmission are all larger than that of LGS.The transmission spectra between parallel polasizers show that they have large optical activities which are larger than that of LGS. Of the four crystals, Sr3NbGa3Si2O14 has the largest optical activity : 240.75 (°)·mm^-1 at 0.30 μm wavelength, 34.73 (°) ·mm^-1 at 0. 633 μm wavelength. The Bohzmann's coefficients of these crystals were calculated, which were in good agreement with earlier measurement in other reference.
基金Project supported by National Key Research and Development Program of China(2020YFC1909102)Natural Science Foundation of Inner Mongolia(2020BS05033)+1 种基金Inner Mongolia Major Basic Research Open Project(0406091701)Major Projects of Natural Science Foundation of Inner Mongolia of China(2018ZD07)。
文摘Neodymium oxyfluoride has received much attention in the fields of anionic solid electrolytes.luminescent,catalytic and magnetic materials because of its structure combined advantages of rareearth cations with F^(-)and O_(2)^(-)anions.In this work,neodynium oxyfluoride was synthesized by the reaction between neodymium oxide and four fluoride media with different fluoride ion activities.The synthesis processes in molten LiF-CaF_(2)-NdF_(3),LiF-NdF_(3),NaF-CaF_(2)-NdF_(3)and NaF-KF-NdF_(3)are observed in situ by a confocal scanning laser microscope.The expansion of neodymium oxide particle is observed in the LiF-CaF_(2)-NdF_(3),LiF-NdF_(3),and NaF-KF-NdF_(3)melts,and the growth of needle crystals on neodymium oxide particle is clearly observed in molten NaF-CaF_(2)-NdF_(3).Based on scanning electron microscopy(SEM)-energy dispersive X-ray spectroscopy(EDS)and X-ray diffraction(XRD)analyses of products,neodynium oxyfluoride was successfully synthesized in the four fluoride media.The neodynium oxyfluoride generated in the LiF-CaF_(2)-NdF_(3),LiF-NdF_(3),and NaF-KF-NdF_(3)melts is a tetragonal structure.However,in molten NaF-CaF_(2)-NdF_(3),neodynium oxyfluoride with a rhombohedral structure is formed.It is suggested that the substitution of Na(Ⅰ)and Ca(Ⅱ)for Nd(Ⅲ)can transform NdOF from tetragonal structure to rhombohedral structure.The growth rate of needle crystals generated in molten NaF-CaF_(2)-NdF_(3)was calculated based on the result of a confocal scanning laser microscope,and it is found that the reaction kinetics of crystal formation is zero-order reaction.The effect of fluoride media on the structure and morphology of formed NdOF were evaluated by XRD,X-ray photoelectron spectroscopy(XPS)and SEM.The neodymium oxyfluoride prepared in the fluoride media with high fluoride ion activity has low binding energy of F 1 s.The ratio of adsorbed oxygen to lattice oxygen for neodymium oxyfluoride prepared in molten LiF-NdF_(3)is larger than those in the other three fluoride media,so it can have better catalytic performance.