Excessive use of organophosphate pesticides(OP),such as dichlorvos,in farming system poses a threat to human health through potential contamination of environment.To date,biodegradation has been prospected most promis...Excessive use of organophosphate pesticides(OP),such as dichlorvos,in farming system poses a threat to human health through potential contamination of environment.To date,biodegradation has been prospected most promising approach to eliminate environmental OP residues.Trichoderma species as a biological control microorganism is often exposed to the chemical pesticides applied in environments,so it is necessary to understand the mechanism of degradation of dichlorvos by Trichoderma.In this study,dichlorvos significantly inhibited the growth,sporulation and pigmentation of T.atroviride T23,and the dichlorvos degradation activity of T23 required the initial induction effect of dichlorvos and the culture conditions,including the nutrient and pH values of the medium.Various changed primary and secondary metabolites released from T23 in the presence of dichlorvos were speculated as the energy and antioxidants for the strain itself to tolerate dichlorvos stress.The results showed that T23 could produce a series of enzymes,especially the intracellular enzymes,to degrade dichlorvos.The activities of the intracellular enzyme generated by T23 were differentially changed along time course and especially relied on initial dichlorvos concentration,ammonium sulfate and phosphate added in the medium.In conclusion,some dichlorvos-induced chemical degradation related enzymes of T23 were proved to be involved in the degradation of dichlorvos.展开更多
New strain induced melt activation(new SIMA) method was employed to prepare high-quality semisolid billet of AZ61 magnesium alloy.Optical microscopy and tensile test were used to study the microstructure and mechani...New strain induced melt activation(new SIMA) method was employed to prepare high-quality semisolid billet of AZ61 magnesium alloy.Optical microscopy and tensile test were used to study the microstructure and mechanical properties of the thixo-extruded component.The results showed that the optimal process parameters for achieving the complete filling status involved the applied pressure of 784 MPa,the pressure holding time of 90 s and the die temperature of 450 ℃.Compared to semisolid isothermal treatment,high mechanical properties such as the tensile strength of 300.5 MPa and elongation of 22% and fine microstructure were obtained in the thixo-extruded parts.With increasing the isothermal temperature and holding time,the tensile strength and elongation were increased firstly and then decreased.When the press pass was increased from 1 to 4,the tensile strength and elongation of the thixo-extruded parts were greatly enhanced and microstructure was refined obviously.展开更多
N-(4-Carboxy-phenyl)-3,5-di-t-butyl-4-hydroxy-benzamide (2) possesses structural prerequisite for cell differentiation inducing activity, which constitutes the therapeutic basis of all trans retinoic acid (ATRA) ...N-(4-Carboxy-phenyl)-3,5-di-t-butyl-4-hydroxy-benzamide (2) possesses structural prerequisite for cell differentiation inducing activity, which constitutes the therapeutic basis of all trans retinoic acid (ATRA) and analogues for the treatment of cancer and dermatosis. In addition to the similarity of the disposition of functional groups with ATRA, 2 shows a conformational equivalence to ATRA in terms of molecular shape, size, as well as the spatial arrangement of functional groups. However, the N methylated compound (3) is devoid of the activity. It owes the biological behavior to the conformational difference, because of the steric interference between N methyl group and the hydrogen atom of a phenyl ring. X ray crystallography, UV, and NMR were performed to investigate the difference.展开更多
Interferon(IFN) with antiviral and im-munomodulatory activities is one of the most important therapeutic agents for the treatment of chronic hepatitis. The apoptotic effect of IFN is influenced by cell type and the ty...Interferon(IFN) with antiviral and im-munomodulatory activities is one of the most important therapeutic agents for the treatment of chronic hepatitis. The apoptotic effect of IFN is influenced by cell type and the types of IFN, which suppresses proliferation and induces apoptosis in some cell types while inhibiting apoptosis in others. The aim of this study was to explore the effect of IFNα-2a on Fas expression and the apoptosis rate of peripheral blood cytotoxic T cells (CTLs) in patients with hepatitis B. METHODS:Peripheral blood mononuclear cells were isolated from 26 patients with hepatitis B including 16 patients with chronic hepatitis B and 10 patients with chronic severe hepatitis B. Fas expression and apoptosis rate of CTLs were analyzed with flow cytometry before and after IFNα-2a treatment. RESULTS:Before IFNα-2a treatment, Fas expression and apoptosis rate of CTLs from patients with chronic hepatitis B were significantly higher than those from patients with chronic severe hepatitis B and healthy controls respectively. No significant difference was observed between Fas expression and apoptosis rate of CTLs from patients with chronic severe hepatitis B and healthy controls. After IFNα-2a treatment,Fas expression and apoptosis rate of CTLs from different groups were compared with those before IFNα-2a treatment, showing no significant difference despite alternation of different degree. CONCLUSIONS:Activation induced cell death (AICD) exists in peripheral blood CTLs from patients with hepatitis B. No effect of IFNα-2a exerts on Fas expression and apoptosis rate of Fas in patients with hepatitis B.展开更多
Structure evolution of an Al-Zn wrought alloy in remelting processing in thestrain induced melt activated (SIMA) serai-solid procedure was observed, and effects of factors, theremelting temperature, the holding time, ...Structure evolution of an Al-Zn wrought alloy in remelting processing in thestrain induced melt activated (SIMA) serai-solid procedure was observed, and effects of factors, theremelting temperature, the holding time, and the compression strain, on structures and grain sizesof the alloy were investigated. The results show that (1) the proper temperature of remelting is inthe range of 610 to 615℃; (2) the grain size in specimen with greater compression strain is smallerthan that with smaller compression strain in condition of the same remelting temperature andholding time, and the grain size in local area with great local equivalent strain is smaller thanthat with small one; (3) liquid occurs in form of cluster in matrix during remelting and itsquantity increases with remelting time increasing; liquid in specimen with great compression strainoccurs earlier than that with small one, and quantity of liquid in the center of specimen withgreater local equivalent strain is greater than that in the two ends of it; (4) distortion energyafter deforming in matrix of the alloy is the significant factor to activate melting of matrix atlocal area with great local equivalent strain.展开更多
Semisolid billet of AZ80 magnesium alloy was prepared by new strain induced melt activated (new SIMA) process and thixoforging experiment was performed.The results show that after as-cast AZ80 magnesium alloy is proce...Semisolid billet of AZ80 magnesium alloy was prepared by new strain induced melt activated (new SIMA) process and thixoforging experiment was performed.The results show that after as-cast AZ80 magnesium alloy is processed by equal channel angular extrusion, microstructure is refined well due to heavy dynamic recrystallization occurring in severe plastic deformation.Compared with semisolid isothermal treatment and conventional SIMA, semisolid billet with fine and spheroidal grains are achieved in new SIMA.Thixoforging process of semisolid billet prepared by new SIMA has many advantages such as good surface quality of final component, high ability to fill cavity and net-shape.The fine and spheroidal grains and high mechanical properties such as tensile strength of 298 MPa and elongation of 28% can be developed in final part thixoforged.展开更多
A new Mg−10%Al−1%Zn−1%Si alloy with non-dendritic microstructure was prepared by strain induced melt activation(SIMA)process.The effect of compression ratio on the evolution of semisolid microstructure of the experime...A new Mg−10%Al−1%Zn−1%Si alloy with non-dendritic microstructure was prepared by strain induced melt activation(SIMA)process.The effect of compression ratio on the evolution of semisolid microstructure of the experimental alloy was investigated.The results indicate that the average size ofα-Mg grains decreases and spheroidizing tendency becomes more obvious with the compression ratios increasing from 0 to 40%.In addition,the eutectic Mg2Si phase in the Mg−10%Al−1%Zn−1%Si alloy transforms completely from the initial fishbone shape to globular shape by SIMA process.With the increasing of compression ratio,the morphology and average size of Mg2Si phases do not change obviously.The morphology modification mechanism of Mg2Si phase in Mg−10%Al−1%Zn−1%Si alloy by SIMA process was also studied.展开更多
The effects of Al-8B grain refiner on microstructure and tensile properties of an Al-12Zn-3Mg-2.5Cu alloy produced by modified strain induced melt activation process were investigated. Pre-deformation of 60% was used ...The effects of Al-8B grain refiner on microstructure and tensile properties of an Al-12Zn-3Mg-2.5Cu alloy produced by modified strain induced melt activation process were investigated. Pre-deformation of 60% was used by hot working at 300 ℃. After pre-deformation, the samples were heated to a temperature above the solidus and below the liquidus point and maintained in the isothermal conditions at three different temperatures(500, 550 and 590 ℃) for varying time(10, 20 and 40 min). It was observed that strain induced melt activation has caused the globular morphology of α(Al) grains. Microstructural study was carried out on the alloy by using optical microscope and scanning electron microscope in both unrefined and B-refined conditions. The results showed that for the desired microstructures of the alloy during SIMA process, the optimum temperature and time are 550 ℃ and 10 min, respectively. After the T6 heat treatment, the average tensile strengths increased from 278 to 585 MPa and 252 to 560 MPa for samples refined with 3.75% Al-8B before and after SIMA process, respectively. The ultimate strength of SIMA specimens is lower than that of B-refined specimens.展开更多
Natural fractures are generally well developed in most hydrocarbon and geothermal reservoirs,which can produce complex fracture networks due to the activation of fractures during hydraulic stimulation.The present pape...Natural fractures are generally well developed in most hydrocarbon and geothermal reservoirs,which can produce complex fracture networks due to the activation of fractures during hydraulic stimulation.The present paper is devoted to developing a method to investigate the activation characteristics of fracture under injection-shearing coupled condition at laboratory scale.The fluid is injected into the single-fractured granite until the fracture is activated based on the triaxial direct shear tests.The results show that injection process can significantly influence the shear stress distribution field,resulting in release of shear stress and relative slip between the opposite sides of the fractured surface.The injectioninduced activation of fracture is strongly dependent on the stress states.When the normal stress increases,the injection-induced activation pressure increases,and the comparatively high normal stress can restrain the fracture activation.The fracture deformation mechanisms during fluid injection are also discussed preliminarily with the experimental data.The sensitivity of shear stress to fluid injection increases with increase of shear stress level,while it decreases under high normal stress.The results can facilitate our understanding of the natural fracture activation behavior during fluid pressure stimulation.展开更多
Osteoclast-like cells are known to inhibit arterial calcification. Receptor activator of NF-κB ligand(RANKL) is likely to act as an inducer of osteoclast-like cell differentiation. However,several studies have show...Osteoclast-like cells are known to inhibit arterial calcification. Receptor activator of NF-κB ligand(RANKL) is likely to act as an inducer of osteoclast-like cell differentiation. However,several studies have shown that RANKL promotes arterial calcification rather than inhibiting arterial calcification. The present study was conducted in order to investigate and elucidate this paradox. Firstly,RANKL was added into the media,and the monocyte precursor cells were cultured. Morphological observation and Tartrate resistant acid phosphatase(TRAP) staining were used to assess whether RANKL could induce the monocyte precursor cells to differentiate into osteoclast-like cells. During arterial calcification,in vivo and in vitro expression of RANKL and its inhibitor,osteoprotegerin(OPG),was detected by real-time PCR. The extent of osteoclast-like cell differentiation was also assessed. It was found RANKL could induce osteoclast-like cell differentiation. There was no in vivo or in vitro expression of osteoclast-like cells in the early stage of calcification. At that time,the ratio of RANKL to OPG was very low. In the late stage of calcification,a small amount of osteoclast-like cell expression coincided with a relatively high ratio of RANKL to OPG. According to the results,the ratio of RANKL to OPG was very low during most of the arterial calcification period. This made it possible for OPG to completely inhibit RANKL-induced osteoclast-like cell differentiation. This likely explains why RANKL had the ability to induce osteoclast-like cell differentiation but acted as a promoter of calcification instead.展开更多
The inducible CRISPR activation(CRISPR-a)system offers unparalleled precision and versatility for regu-lating endogenous genes,making it highly sought after in plant research.In this study,we developed a chem-ically i...The inducible CRISPR activation(CRISPR-a)system offers unparalleled precision and versatility for regu-lating endogenous genes,making it highly sought after in plant research.In this study,we developed a chem-ically inducible CRISPR-a tool for plants called ER-Tag by combining the LexA-VP16-ER inducible system with the SunTag CRISPR-a system.We systematically compared different induction strategies and achieved high efficiency in target gene activation.We demonstrated that guide RNAs can be multiplexed and pooled for large-scale screening of effective morphogenic genes and gene pairs involved in plant regeneration.Further experiments showed that induced activation of these morphogenic genes can accelerate regenera-tion and improve regeneration efficiency in both eudicot and monocot plants,including alfalfa,woodland strawberry,and sheepgrass.Our study expands the CRISPR toolset in plants and provides a powerful new strategy for studying gene function when constitutive expression is not feasible or ideal.展开更多
Elevated plasma levels of high density lipoprotein (HDL) are recognized as having a beneficial influence on the progression of atherosclerosis. As platelets are closely involved in atherosclerogenesis, it is difficul...Elevated plasma levels of high density lipoprotein (HDL) are recognized as having a beneficial influence on the progression of atherosclerosis. As platelets are closely involved in atherosclerogenesis, it is difficult to evaluate if the protective effect of HDL is associated with its ability to affect platelet structure and function. Previous studies give conflicting reports concerning the HDL platelet interaction. In our in vitro experiments, washed human blood platelets were preincubated with HDL (100 800 μg/ml) and then stimulated by serotonin (5 Hydroxytryptamine, 1 5 μM), a potent agonist and mediator in the process of atherosclerosis. Aggregatory studies and electron microscopy revealed that HDL could not prevent morphological alterations of blood platelets treated with serotonin. Furthermore, high dosages of HDL led to platelet activation. These findings indicate that HDL may not inhibit agonist induced platelet activation. As HDL is a heterogeneous group of different subclasses with opposite effects on platelet function, it Platelet Research Unit, Institute of Anatomy, University of Münster, Germany (Pfennig O and Dierichs R) Institute of Physiology, Ruhr University Bochum, Bochum, Germany (Liu B) can be concluded that HDL platelet interaction reflects relative concentrations of the particular sample. Our findings suggest that the protective influence of HDL may not be associated with decreased platelet function. Apoprotein E rich subclasses of HDL (HDL 2), particularly HDL enriched apoprotein E (HDL E), inhibit agonist induced platelet activation. In order to enlighten the role of apo E in this process, platelets in suspensions were preincubated with purified apoprotein E (50 400 μg/ml) and then stimulated by serotonin (5 μM). Apoprotein E of 300 μg/ml prevented morphological alterations of blood platelets and suppressed serotonin induced activation. Lower concentrated apoprotein E showed no clear effects. There is evidence that apoprotein E is an important factor in the prevention of atherosclerosis, by enhancing the reversed cholesterol transport to the liver and modifiing the functional status of different cell types such as macrophages and smooth muscle cells. Because results showed effects of apo R on platelet activation, we suggest that apoprotein E may be a principal factor when platelet aggregability is suppressed by HDL subclasses or liposomes and that the antiatherogenic potency of apo E correlates with this process.展开更多
基金supported by the National Natural Science Foundation of China(31872015)the Shanghai Science and Technology Innovation Action Program of the Shanghai Science and Technology Commission,China(21N41900200)+2 种基金the Shanghai Agricultural Applied Technology Development Program(2022-02-08-00-12-F0-01143)the China Agriculture Research System of MOF and MARA(CARS-02)the National Key R&D Program of China(2017YFD0200403).
文摘Excessive use of organophosphate pesticides(OP),such as dichlorvos,in farming system poses a threat to human health through potential contamination of environment.To date,biodegradation has been prospected most promising approach to eliminate environmental OP residues.Trichoderma species as a biological control microorganism is often exposed to the chemical pesticides applied in environments,so it is necessary to understand the mechanism of degradation of dichlorvos by Trichoderma.In this study,dichlorvos significantly inhibited the growth,sporulation and pigmentation of T.atroviride T23,and the dichlorvos degradation activity of T23 required the initial induction effect of dichlorvos and the culture conditions,including the nutrient and pH values of the medium.Various changed primary and secondary metabolites released from T23 in the presence of dichlorvos were speculated as the energy and antioxidants for the strain itself to tolerate dichlorvos stress.The results showed that T23 could produce a series of enzymes,especially the intracellular enzymes,to degrade dichlorvos.The activities of the intracellular enzyme generated by T23 were differentially changed along time course and especially relied on initial dichlorvos concentration,ammonium sulfate and phosphate added in the medium.In conclusion,some dichlorvos-induced chemical degradation related enzymes of T23 were proved to be involved in the degradation of dichlorvos.
基金Project(51075099) supported by the National Natural Science Foundation of ChinaProject(E201038) supported by the Natural Science Foundation of Heilongjiang Province,China+3 种基金Project(20090460884) supported by the China Postdoctoral Science FoundationProjects (HIT.NSRIF.2013007 and 2012038) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (2011RFQXG010) supported by the Harbin City Young Scientists Foundation under the GrantProject(LBH-T1102) supported by the Specially Postdoctoral Science Foundation of Heilongjiang Province,China
文摘New strain induced melt activation(new SIMA) method was employed to prepare high-quality semisolid billet of AZ61 magnesium alloy.Optical microscopy and tensile test were used to study the microstructure and mechanical properties of the thixo-extruded component.The results showed that the optimal process parameters for achieving the complete filling status involved the applied pressure of 784 MPa,the pressure holding time of 90 s and the die temperature of 450 ℃.Compared to semisolid isothermal treatment,high mechanical properties such as the tensile strength of 300.5 MPa and elongation of 22% and fine microstructure were obtained in the thixo-extruded parts.With increasing the isothermal temperature and holding time,the tensile strength and elongation were increased firstly and then decreased.When the press pass was increased from 1 to 4,the tensile strength and elongation of the thixo-extruded parts were greatly enhanced and microstructure was refined obviously.
文摘N-(4-Carboxy-phenyl)-3,5-di-t-butyl-4-hydroxy-benzamide (2) possesses structural prerequisite for cell differentiation inducing activity, which constitutes the therapeutic basis of all trans retinoic acid (ATRA) and analogues for the treatment of cancer and dermatosis. In addition to the similarity of the disposition of functional groups with ATRA, 2 shows a conformational equivalence to ATRA in terms of molecular shape, size, as well as the spatial arrangement of functional groups. However, the N methylated compound (3) is devoid of the activity. It owes the biological behavior to the conformational difference, because of the steric interference between N methyl group and the hydrogen atom of a phenyl ring. X ray crystallography, UV, and NMR were performed to investigate the difference.
文摘Interferon(IFN) with antiviral and im-munomodulatory activities is one of the most important therapeutic agents for the treatment of chronic hepatitis. The apoptotic effect of IFN is influenced by cell type and the types of IFN, which suppresses proliferation and induces apoptosis in some cell types while inhibiting apoptosis in others. The aim of this study was to explore the effect of IFNα-2a on Fas expression and the apoptosis rate of peripheral blood cytotoxic T cells (CTLs) in patients with hepatitis B. METHODS:Peripheral blood mononuclear cells were isolated from 26 patients with hepatitis B including 16 patients with chronic hepatitis B and 10 patients with chronic severe hepatitis B. Fas expression and apoptosis rate of CTLs were analyzed with flow cytometry before and after IFNα-2a treatment. RESULTS:Before IFNα-2a treatment, Fas expression and apoptosis rate of CTLs from patients with chronic hepatitis B were significantly higher than those from patients with chronic severe hepatitis B and healthy controls respectively. No significant difference was observed between Fas expression and apoptosis rate of CTLs from patients with chronic severe hepatitis B and healthy controls. After IFNα-2a treatment,Fas expression and apoptosis rate of CTLs from different groups were compared with those before IFNα-2a treatment, showing no significant difference despite alternation of different degree. CONCLUSIONS:Activation induced cell death (AICD) exists in peripheral blood CTLs from patients with hepatitis B. No effect of IFNα-2a exerts on Fas expression and apoptosis rate of Fas in patients with hepatitis B.
文摘Structure evolution of an Al-Zn wrought alloy in remelting processing in thestrain induced melt activated (SIMA) serai-solid procedure was observed, and effects of factors, theremelting temperature, the holding time, and the compression strain, on structures and grain sizesof the alloy were investigated. The results show that (1) the proper temperature of remelting is inthe range of 610 to 615℃; (2) the grain size in specimen with greater compression strain is smallerthan that with smaller compression strain in condition of the same remelting temperature andholding time, and the grain size in local area with great local equivalent strain is smaller thanthat with small one; (3) liquid occurs in form of cluster in matrix during remelting and itsquantity increases with remelting time increasing; liquid in specimen with great compression strainoccurs earlier than that with small one, and quantity of liquid in the center of specimen withgreater local equivalent strain is greater than that in the two ends of it; (4) distortion energyafter deforming in matrix of the alloy is the significant factor to activate melting of matrix atlocal area with great local equivalent strain.
基金Project(50605015) supported by the National Natural Science Foundation of ChinaProject(HITQNJS.2008.012) supported by Development Program for Outstanding Young Teachers in Harbin Institute of Technology,China+1 种基金Projects(20090460884,20080440849) supported by China Postdoctoral Science FoundationProject(LBH-Q08104) supported by the Postdoctoral Foundation of Heilongjiang Province,China
文摘Semisolid billet of AZ80 magnesium alloy was prepared by new strain induced melt activated (new SIMA) process and thixoforging experiment was performed.The results show that after as-cast AZ80 magnesium alloy is processed by equal channel angular extrusion, microstructure is refined well due to heavy dynamic recrystallization occurring in severe plastic deformation.Compared with semisolid isothermal treatment and conventional SIMA, semisolid billet with fine and spheroidal grains are achieved in new SIMA.Thixoforging process of semisolid billet prepared by new SIMA has many advantages such as good surface quality of final component, high ability to fill cavity and net-shape.The fine and spheroidal grains and high mechanical properties such as tensile strength of 298 MPa and elongation of 28% can be developed in final part thixoforged.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.41807235,50674038).
文摘A new Mg−10%Al−1%Zn−1%Si alloy with non-dendritic microstructure was prepared by strain induced melt activation(SIMA)process.The effect of compression ratio on the evolution of semisolid microstructure of the experimental alloy was investigated.The results indicate that the average size ofα-Mg grains decreases and spheroidizing tendency becomes more obvious with the compression ratios increasing from 0 to 40%.In addition,the eutectic Mg2Si phase in the Mg−10%Al−1%Zn−1%Si alloy transforms completely from the initial fishbone shape to globular shape by SIMA process.With the increasing of compression ratio,the morphology and average size of Mg2Si phases do not change obviously.The morphology modification mechanism of Mg2Si phase in Mg−10%Al−1%Zn−1%Si alloy by SIMA process was also studied.
文摘The effects of Al-8B grain refiner on microstructure and tensile properties of an Al-12Zn-3Mg-2.5Cu alloy produced by modified strain induced melt activation process were investigated. Pre-deformation of 60% was used by hot working at 300 ℃. After pre-deformation, the samples were heated to a temperature above the solidus and below the liquidus point and maintained in the isothermal conditions at three different temperatures(500, 550 and 590 ℃) for varying time(10, 20 and 40 min). It was observed that strain induced melt activation has caused the globular morphology of α(Al) grains. Microstructural study was carried out on the alloy by using optical microscope and scanning electron microscope in both unrefined and B-refined conditions. The results showed that for the desired microstructures of the alloy during SIMA process, the optimum temperature and time are 550 ℃ and 10 min, respectively. After the T6 heat treatment, the average tensile strengths increased from 278 to 585 MPa and 252 to 560 MPa for samples refined with 3.75% Al-8B before and after SIMA process, respectively. The ultimate strength of SIMA specimens is lower than that of B-refined specimens.
基金The financial support by the National Key Research and Development Program of China(Grant No.2018YFC0809601)the National Natural Science Foundation of China(Grant No.51779252)+1 种基金the Major Technological Innovation Projects of Hubei,China(Grant No.2017AAA128)the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)for this work are gratefully acknowledged。
文摘Natural fractures are generally well developed in most hydrocarbon and geothermal reservoirs,which can produce complex fracture networks due to the activation of fractures during hydraulic stimulation.The present paper is devoted to developing a method to investigate the activation characteristics of fracture under injection-shearing coupled condition at laboratory scale.The fluid is injected into the single-fractured granite until the fracture is activated based on the triaxial direct shear tests.The results show that injection process can significantly influence the shear stress distribution field,resulting in release of shear stress and relative slip between the opposite sides of the fractured surface.The injectioninduced activation of fracture is strongly dependent on the stress states.When the normal stress increases,the injection-induced activation pressure increases,and the comparatively high normal stress can restrain the fracture activation.The fracture deformation mechanisms during fluid injection are also discussed preliminarily with the experimental data.The sensitivity of shear stress to fluid injection increases with increase of shear stress level,while it decreases under high normal stress.The results can facilitate our understanding of the natural fracture activation behavior during fluid pressure stimulation.
基金supported by the Hubei Province Health and Family Planning Scientific Research Foundation of China(No.WJ2015MB141)
文摘Osteoclast-like cells are known to inhibit arterial calcification. Receptor activator of NF-κB ligand(RANKL) is likely to act as an inducer of osteoclast-like cell differentiation. However,several studies have shown that RANKL promotes arterial calcification rather than inhibiting arterial calcification. The present study was conducted in order to investigate and elucidate this paradox. Firstly,RANKL was added into the media,and the monocyte precursor cells were cultured. Morphological observation and Tartrate resistant acid phosphatase(TRAP) staining were used to assess whether RANKL could induce the monocyte precursor cells to differentiate into osteoclast-like cells. During arterial calcification,in vivo and in vitro expression of RANKL and its inhibitor,osteoprotegerin(OPG),was detected by real-time PCR. The extent of osteoclast-like cell differentiation was also assessed. It was found RANKL could induce osteoclast-like cell differentiation. There was no in vivo or in vitro expression of osteoclast-like cells in the early stage of calcification. At that time,the ratio of RANKL to OPG was very low. In the late stage of calcification,a small amount of osteoclast-like cell expression coincided with a relatively high ratio of RANKL to OPG. According to the results,the ratio of RANKL to OPG was very low during most of the arterial calcification period. This made it possible for OPG to completely inhibit RANKL-induced osteoclast-like cell differentiation. This likely explains why RANKL had the ability to induce osteoclast-like cell differentiation but acted as a promoter of calcification instead.
基金supported by the National Key R&D Program of China (2022YFD1500503 to X.S.)the Key Projects in Science and Technology of Inner Mongolia (2021ZD0031 to X.C.and S.Z.)+6 种基金the National Key Research and Development Program (2022YFF1002802 to X.D.)the Youth Innovation Promotion Association,CAS (Y2022039 to X.D.)the Youth Innovation Promotion Association,CAS (2022096 to S.Z.)the National Science Foundation of China (NSFC32272692 to J.Z.)Project ZR2022QC054 of the Shandong Provincial Natural Science Foundation (to Y.T.)funding from the State Key Laboratory of Protein and Plant Gene Research (to Q.L.).
文摘The inducible CRISPR activation(CRISPR-a)system offers unparalleled precision and versatility for regu-lating endogenous genes,making it highly sought after in plant research.In this study,we developed a chem-ically inducible CRISPR-a tool for plants called ER-Tag by combining the LexA-VP16-ER inducible system with the SunTag CRISPR-a system.We systematically compared different induction strategies and achieved high efficiency in target gene activation.We demonstrated that guide RNAs can be multiplexed and pooled for large-scale screening of effective morphogenic genes and gene pairs involved in plant regeneration.Further experiments showed that induced activation of these morphogenic genes can accelerate regenera-tion and improve regeneration efficiency in both eudicot and monocot plants,including alfalfa,woodland strawberry,and sheepgrass.Our study expands the CRISPR toolset in plants and provides a powerful new strategy for studying gene function when constitutive expression is not feasible or ideal.
文摘Elevated plasma levels of high density lipoprotein (HDL) are recognized as having a beneficial influence on the progression of atherosclerosis. As platelets are closely involved in atherosclerogenesis, it is difficult to evaluate if the protective effect of HDL is associated with its ability to affect platelet structure and function. Previous studies give conflicting reports concerning the HDL platelet interaction. In our in vitro experiments, washed human blood platelets were preincubated with HDL (100 800 μg/ml) and then stimulated by serotonin (5 Hydroxytryptamine, 1 5 μM), a potent agonist and mediator in the process of atherosclerosis. Aggregatory studies and electron microscopy revealed that HDL could not prevent morphological alterations of blood platelets treated with serotonin. Furthermore, high dosages of HDL led to platelet activation. These findings indicate that HDL may not inhibit agonist induced platelet activation. As HDL is a heterogeneous group of different subclasses with opposite effects on platelet function, it Platelet Research Unit, Institute of Anatomy, University of Münster, Germany (Pfennig O and Dierichs R) Institute of Physiology, Ruhr University Bochum, Bochum, Germany (Liu B) can be concluded that HDL platelet interaction reflects relative concentrations of the particular sample. Our findings suggest that the protective influence of HDL may not be associated with decreased platelet function. Apoprotein E rich subclasses of HDL (HDL 2), particularly HDL enriched apoprotein E (HDL E), inhibit agonist induced platelet activation. In order to enlighten the role of apo E in this process, platelets in suspensions were preincubated with purified apoprotein E (50 400 μg/ml) and then stimulated by serotonin (5 μM). Apoprotein E of 300 μg/ml prevented morphological alterations of blood platelets and suppressed serotonin induced activation. Lower concentrated apoprotein E showed no clear effects. There is evidence that apoprotein E is an important factor in the prevention of atherosclerosis, by enhancing the reversed cholesterol transport to the liver and modifiing the functional status of different cell types such as macrophages and smooth muscle cells. Because results showed effects of apo R on platelet activation, we suggest that apoprotein E may be a principal factor when platelet aggregability is suppressed by HDL subclasses or liposomes and that the antiatherogenic potency of apo E correlates with this process.