This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagno...This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks(RNNs)with Long Short-Term Memory(LSTM)layers and echo state cells.These models are tailored to improve diagnostic precision,particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal diseases.Traditional diagnostic methods and existing CDSS frameworks often fall short in managing complex,sequential medical data,struggling with long-term dependencies and data imbalances,resulting in suboptimal accuracy and delayed decisions.Our goal is to develop Artificial Intelligence(AI)models that address these shortcomings,offering robust,real-time diagnostic support.We propose a hybrid RNN model that integrates SimpleRNN,LSTM layers,and echo state cells to manage long-term dependencies effectively.Additionally,we introduce CG-Net,a novel Convolutional Neural Network(CNN)framework for gastrointestinal disease classification,which outperforms traditional CNN models.We further enhance model performance through data augmentation and transfer learning,improving generalization and robustness against data scarcity and imbalance.Comprehensive validation,including 5-fold cross-validation and metrics such as accuracy,precision,recall,F1-score,and Area Under the Curve(AUC),confirms the models’reliability.Moreover,SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)are employed to improve model interpretability.Our findings show that the proposed models significantly enhance diagnostic accuracy and efficiency,offering substantial advancements in WBANs and CDSS.展开更多
With the beginning of the information systems’ spreading, people started thinking about using them for making business decisions. Computer technology solutions, such as the Decision Support System, make the decision-...With the beginning of the information systems’ spreading, people started thinking about using them for making business decisions. Computer technology solutions, such as the Decision Support System, make the decision-making process less complex and simpler for problem-solving. In order to make a high-quality business decision, managers need to have a great deal of appropriate information. Nonetheless, this complicates the process of making appropriate decisions. In a situation like that, the possibility of using DSS is quite logical. The aim of this paper is to find out the intended use of DSS for medium and large business organizations in USA by applying the Technology Acceptance Model (TAM). Different models were developed in order to understand and predict the use of information systems, but the information systems community mostly used TAM to ensure this issue. The purpose of the research model is to determine the elements of analysis that contribute to these results. The sample for the research consisted of the target group that was supposed to have completed an online questionnaire about the manager’s use of DSS in medium and large American companies. The information obtained from the questionnaires was analyzed through the SPSS statistical software. The research has indicated that, this is primarily used due to a significant level of Perceived usefulness and For the Perceived ease of use.展开更多
To address the challenges of current college student employment management,this study designed and implemented a machine learning-based decision support system for college student employment management.The system coll...To address the challenges of current college student employment management,this study designed and implemented a machine learning-based decision support system for college student employment management.The system collects and analyzes multidimensional data,uses machine learning algorithms for prediction and matching,provides personalized employment guidance for students,and provides decision support for universities and enterprises.The research results indicate that the system can effectively improve the efficiency and accuracy of employment guidance,promote school-enterprise cooperation,and achieve a win-win situation for all parties.展开更多
In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, an...In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand.展开更多
The concept of organization decision support system (ODSS) is defined according to practical applications and novel understanding. And a framework for ODSS is designed. The framework has three components: infrastru...The concept of organization decision support system (ODSS) is defined according to practical applications and novel understanding. And a framework for ODSS is designed. The framework has three components: infrastructure, decision-making process and decision execution process. Infrastructure is responsible to transfer data and information. Decision-making process is the ODSS's soul to support decision-making. Decision execution process is to evaluate and execute decision results derived from decision-making process. The framework presents a kind of logic architecture. An example is given to verify and analyze the framework. The analysis shows that the framework has practical values, and has also reference values for understanding ODSS and for theoretical studies.展开更多
Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptua...Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptual design, introducing the theory of inventive problem solving (TRIZ) into the mechanical product design for producing innovative ideas, and using the advanced computer-aided technique, the intelligent decision support system (IDSS) based on TRIZ (TRIZ-IDSS) has been constructed. The construction method, system structure, conceptual production, decisionmaking and evaluation of the problem solving subsystem are discussed. The innovative conceptual design of pumping units indicates that the system can help the engineers open up a new space of thinking, overcome the thinking inertia, and put forward innovative design concepts. This system also can offer the scientific instructions for the innovative design of mechanical products.展开更多
Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point ...Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point method is used to solve the complicated and large scale problems of making and adjusting train schedule. This paper focuses on the principle and framework of the model base, knowledge base of train diagram. It is shown that the TDIMODSS can solve the problems and their uncertainty in making train diagram, and can combine the expert knowledge, experience and judgement of a decision maker into the system. In addition to that, a friendly working environment is also presented, which brings together the human judgement, the adaptability to environment and the computerised information.展开更多
In order to solve the problem of the maze precision fertilizer,soil fertility evaluation,soil fertility classify and yield projections,the geographic information system with spatial information processing functions,sp...In order to solve the problem of the maze precision fertilizer,soil fertility evaluation,soil fertility classify and yield projections,the geographic information system with spatial information processing functions,spatial data mining techniques with spatial information analysis capabilities,expert system technology in the field of artificial intelligence,traditional information management systems and decision support system were effectively integrated in this study,and the statistical analysis method of GIS and data visualization were combined to design and implement the maize precise intelligent space decision-making system.This system had greatly improved the decision-making ability in agricultural production carried out by agricultural management.展开更多
Based on platform of GIS software ArcView and theory of management information system(MIS), a decision support system on urban landscape planning was designed via GIS technology, module design technique and object-ori...Based on platform of GIS software ArcView and theory of management information system(MIS), a decision support system on urban landscape planning was designed via GIS technology, module design technique and object-oriented programming technique. The function of this system is realized by its two subsystems—one is for height limit model of city and another is for landscape belt planning, which can help administors in landscape planning.展开更多
[Objective] This study was to provide methods to improve the scientificity and informatization level of agricultural decision-making system based on the study of Decision Support System for "Northing of Winter Wheat...[Objective] This study was to provide methods to improve the scientificity and informatization level of agricultural decision-making system based on the study of Decision Support System for "Northing of Winter Wheat" in Hebei Province (DSS- NWWH). [Method] The functions, development process, operation guidance as well as input and output modes of DSSNWWH were introduced, and the simulated results of the system were verified by comparing with the actual situations. [Result] The decision support system established in this study could predict whether a wheat variety could live through the winter in a certain area of northern Hebei Province, as well as the growth conditions based on the previous meteorological data or local weather forecast, and provided corresponding cultivation and management measures, making it possible for the user to determine whether the variety could be planted in the region based on the predictions. [Conclusion] The established DSSNWWH in this study can effectively help decision makers make decisions, providing scientific instructions for the northing of winter wheat.展开更多
The focus of this paper is on a new concept framework and an architecture of an intelligent decision support syetem generator (DSSG). The framework results from a synthesis of two existing frameworks: Spragae and Bonc...The focus of this paper is on a new concept framework and an architecture of an intelligent decision support syetem generator (DSSG). The framework results from a synthesis of two existing frameworks: Spragae and Bonczek, while the architecture is a rooted partial order network. From our experience which comes out of the project of DSSG, we consider that they are keys of further research and development of DSS.展开更多
Considering some drawbacks of the mainstream approach to environmental management (EM),the conception and basic idea of Participatory EM(PEM) are put forward.PEM possesses some main features and benefits that are supe...Considering some drawbacks of the mainstream approach to environmental management (EM),the conception and basic idea of Participatory EM(PEM) are put forward.PEM possesses some main features and benefits that are superior to the mainstream approach,but also faces the crucial constraint in decision-making.The dilemma can be effectively settled by applying an advanced decision-making support tool-group decision support system(GDSS).On the basis of recognizing the complex decision-making environment of PEM,this paper describes the components of GDSS for PEM(PEM-GDSS) and further discusses the basic requirement of PEM-GDSS.展开更多
The framework of the assistant decision support system of cross-regional rural labor flow is established,the system combines the cross-regional rural labor flow with DSS,which provides the leaders with the maximum ass...The framework of the assistant decision support system of cross-regional rural labor flow is established,the system combines the cross-regional rural labor flow with DSS,which provides the leaders with the maximum assistant decision-making function in the regulation and guidance of rural labors as well as in relevant programs.The assistant decision support system functions are discussed,the function modules of this system are introduced from four aspects,including the analysis of labor flow,the prediction of labor flow,the regulation of cross-regional flow and the configuration of decision support system;based on the data base obtained from dynamic tracking of the migrant workers and combining other data sources,the data warehouse model is established,for example,in the analysis of the labor migration times,a star multi-dimensional data model is designed from the time dimension,place dimension,the type of work dimension,accompaniers dimension and so on;the trans-regional flow of rural labor force is analyzed and predicted by using OLAP from the labor's migration times,migration places and other various perspectives.The operation principles of the assistant decision support system of trans-regional labor flow are introduced,it is pointed out that the system serves the policy-makers of the regulation of labor flow and other relevant enterprises,the system will play an important role in the tracking monitoring and cross-regional regulation of the rural labor flow.展开更多
For river basin management, the reliability of the rating curves mainly depends on the accuracy and time period of the observed discharge and water level data. In the Elbe decision support system (DSS), the rating cur...For river basin management, the reliability of the rating curves mainly depends on the accuracy and time period of the observed discharge and water level data. In the Elbe decision support system (DSS), the rating curves are combined with the HEC-6 model to investigate the effects of river engineering measures on the Elbe River system. In such situations, the uncertainty originating from the HEC-6 model is of significant importance for the reliability of the rating curves and the corresponding DSS results. This paper proposes a two-step approach to analyze the uncertainty in the rating curves and propagate it into the Elbe DSS: analytic method and Latin Hypercube simulation. Via this approach the uncertainty and sensitivity of model outputs to input parameters are successfully investigated. The results show that the proposed approach is very efficient in investigating the effect of uncertainty and can play an important role in improving decision-making under uncertainty.展开更多
An expert decision support system (EDSS) for multi-bins balance and contro1 of orequality in production ore bins of some large-scale open pit iron mine in China has been developed byexpert svitem tool software VP-EXPE...An expert decision support system (EDSS) for multi-bins balance and contro1 of orequality in production ore bins of some large-scale open pit iron mine in China has been developed byexpert svitem tool software VP-EXPERT and integration software LOTUS 1-2-3 in this paper. Itis known by practicing that a medium-scale EDSS constructed on microcomputer is completcly, feaasible by means of VP-EXEPERT to construct knowledge base system (KBS), LOTUS 1-2-3 tomake decision support system (DSS) and link them with BAT.展开更多
With the worldwide analysis,heart disease is considered a significant threat and extensively increases the mortality rate.Thus,the investigators mitigate to predict the occurrence of heart disease in an earlier stage ...With the worldwide analysis,heart disease is considered a significant threat and extensively increases the mortality rate.Thus,the investigators mitigate to predict the occurrence of heart disease in an earlier stage using the design of a better Clinical Decision Support System(CDSS).Generally,CDSS is used to predict the individuals’heart disease and periodically update the condition of the patients.This research proposes a novel heart disease prediction system with CDSS composed of a clustering model for noise removal to predict and eliminate outliers.Here,the Synthetic Over-sampling prediction model is integrated with the cluster concept to balance the training data and the Adaboost classifier model is used to predict heart disease.Then,the optimization is achieved using the Adam Optimizer(AO)model with the publicly available dataset known as the Stalog dataset.This flowis used to construct the model,and the evaluation is done with various prevailing approaches like Decision tree,Random Forest,Logistic Regression,Naive Bayes and so on.The statistical analysis is done with theWilcoxon rank-summethod for extracting the p-value of the model.The observed results show that the proposed model outperforms the various existing approaches and attains efficient prediction accuracy.This model helps physicians make better decisions during complex conditions and diagnose the disease at an earlier stage.Thus,the earlier treatment process helps to eliminate the death rate.Here,simulation is done withMATLAB 2016b,and metrics like accuracy,precision-recall,F-measure,p-value,ROC are analyzed to show the significance of the model.展开更多
Contribution:This paper designs a learning and training platform that can systematically help radiologists learn automated medical image analysis technology.The platform can help radiologists master deep learning theo...Contribution:This paper designs a learning and training platform that can systematically help radiologists learn automated medical image analysis technology.The platform can help radiologists master deep learning theories and medical applications such as the three-dimensional medical decision support system,and strengthen the teaching practice of deep learning related courses in hospitals,so as to help doctors better understand deep learning knowledge and improve the efficiency of auxiliary diagnosis.Background:In recent years,deep learning has been widely used in academia,industry,andmedicine.An increasing number of companies are starting to recruit a large number of professionals in the field of deep learning.Increasing numbers of colleges and universities also offer courses related to deep learning to help radiologists learn automated medical image analysis techniques.For now,however,there is no practical training platform that can help radiologists learn automated medical image analysis systematically.ApplicationDesign:The platform proposes the basic learning,model combat,business application(BMR)concept,including the learning guidance system and the assessment training system,which constitutes a closed-loop learning guidance mode of“learning-assessment-training-learning”.Findings:The survey results show that most of radiologists met their learning expectations by using this platform.The platform can help radiologists master deep learning techniques quickly,comprehensively and firmly.展开更多
Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r ...Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r Aided Process Planning (CAPP) is a step in this direction. Most of the existin g CAPP systems do not consider scheduling while generating a process plan. Sched uling is done separately after the process plan has been generated and therefore , it is possible that a process plan so generated is either not optimal or feasi ble from scheduling point of view. As process plans are generated without consid eration of job shop status, many problems arise within the manufacturing environ ment. Investigations have shown that 20%~30% of all process plans generated are not valid and have to be altered or suffer production delays when production sta rts. There is thus a major need for integration of scheduling with computer aide d process planning for generating more realistic process plans. In doing so, eff iciency of the manufacturing system as a whole is expected to improve. Decision support system performs many functions such as selection of machine too ls, cutting tools, sequencing of operations, determination of optimum cutting pa rameters and checking availability of machine tool before allocating any operati on to a machine tool. The process of transforming component data, process capabi lity and decision rules into computer readable format is still a major obstacle. This paper proposes architecture of a system, which integrates computer aided p rocess-planning system with scheduling using decision support system. A decisio n support system can be defined as " an interactive system that provides the use rs with easy access to decision models in order to support semi-structured or u nstructured decision making tasks".展开更多
Stroke is characterized by high incidence,high recurrence,high disability,and high morbidity and mortality in China,resulting in a heavy social and clinical burden.A clinical decision support system,as an intelli-gent...Stroke is characterized by high incidence,high recurrence,high disability,and high morbidity and mortality in China,resulting in a heavy social and clinical burden.A clinical decision support system,as an intelli-gent computer system,can assist nurses in decision-mak-ing to collect information quickly,make the most suitable personalized decisions for patients,and improve nurses’decision-making judgment and quality of care.Promoting the development and application of decision support sys-tems in stroke nursing significantly enhances the nursing staff’s work quality and patients’prognosis.Therefore,this paper reviews the research progress of domestic and international clinical decision support systems in stroke nursing care to provide other researchers with specific research directions for developing and applying decision support systems in stroke nursing care.展开更多
Coastal zones are very dynamic and fragile environments, constituting a landscape ever more heterogeneous, fragmented and with increasing levels of complexity due to the changing relationship between man and nature. I...Coastal zones are very dynamic and fragile environments, constituting a landscape ever more heterogeneous, fragmented and with increasing levels of complexity due to the changing relationship between man and nature. Integrated coastal zone management therefore requires detailed knowledge of the system and its components, based—to a large extent—on technical and scientific information. However, the information generated must be in line with the political requirements necessary for decision-making and planning. Thus the use of indicators to give a simplified view of the many components of the territory, and at the same time to provide important information about patterns or trends, becomes a tool of the utmost importance. These indicators can be understood as measurable characteristics of the environment, which facilitate comprehension of the processes occurring at different scales and serve as a reference to inform the population and support decision-making. The aim of the present note is to demonstrate briefly the need to develop geographical-environmental and natural risk indicators to facilitate comprehension of the dynamic of spatial and temporal landscape patterns, particularly in coastal environments. This approach offers an historical summary of the natural, socio-economic and political processes which currently make up the territory, and which without doubt will continue to influence it in the future. At the same time, it is proposed that information should be integrated on the basis of this framework with a view to generating spatial decision support systems in a context of planning and integrated management of the coastal zones of Chile.展开更多
基金supported by the“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and granted financial resources from the Ministry of Trade,Industry,and Energy,Korea(No.20204010600090).
文摘This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks(RNNs)with Long Short-Term Memory(LSTM)layers and echo state cells.These models are tailored to improve diagnostic precision,particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal diseases.Traditional diagnostic methods and existing CDSS frameworks often fall short in managing complex,sequential medical data,struggling with long-term dependencies and data imbalances,resulting in suboptimal accuracy and delayed decisions.Our goal is to develop Artificial Intelligence(AI)models that address these shortcomings,offering robust,real-time diagnostic support.We propose a hybrid RNN model that integrates SimpleRNN,LSTM layers,and echo state cells to manage long-term dependencies effectively.Additionally,we introduce CG-Net,a novel Convolutional Neural Network(CNN)framework for gastrointestinal disease classification,which outperforms traditional CNN models.We further enhance model performance through data augmentation and transfer learning,improving generalization and robustness against data scarcity and imbalance.Comprehensive validation,including 5-fold cross-validation and metrics such as accuracy,precision,recall,F1-score,and Area Under the Curve(AUC),confirms the models’reliability.Moreover,SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)are employed to improve model interpretability.Our findings show that the proposed models significantly enhance diagnostic accuracy and efficiency,offering substantial advancements in WBANs and CDSS.
文摘With the beginning of the information systems’ spreading, people started thinking about using them for making business decisions. Computer technology solutions, such as the Decision Support System, make the decision-making process less complex and simpler for problem-solving. In order to make a high-quality business decision, managers need to have a great deal of appropriate information. Nonetheless, this complicates the process of making appropriate decisions. In a situation like that, the possibility of using DSS is quite logical. The aim of this paper is to find out the intended use of DSS for medium and large business organizations in USA by applying the Technology Acceptance Model (TAM). Different models were developed in order to understand and predict the use of information systems, but the information systems community mostly used TAM to ensure this issue. The purpose of the research model is to determine the elements of analysis that contribute to these results. The sample for the research consisted of the target group that was supposed to have completed an online questionnaire about the manager’s use of DSS in medium and large American companies. The information obtained from the questionnaires was analyzed through the SPSS statistical software. The research has indicated that, this is primarily used due to a significant level of Perceived usefulness and For the Perceived ease of use.
文摘To address the challenges of current college student employment management,this study designed and implemented a machine learning-based decision support system for college student employment management.The system collects and analyzes multidimensional data,uses machine learning algorithms for prediction and matching,provides personalized employment guidance for students,and provides decision support for universities and enterprises.The research results indicate that the system can effectively improve the efficiency and accuracy of employment guidance,promote school-enterprise cooperation,and achieve a win-win situation for all parties.
文摘In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand.
基金This project was supported by the National Natural Science Foundation of China (70371052).
文摘The concept of organization decision support system (ODSS) is defined according to practical applications and novel understanding. And a framework for ODSS is designed. The framework has three components: infrastructure, decision-making process and decision execution process. Infrastructure is responsible to transfer data and information. Decision-making process is the ODSS's soul to support decision-making. Decision execution process is to evaluate and execute decision results derived from decision-making process. The framework presents a kind of logic architecture. An example is given to verify and analyze the framework. The analysis shows that the framework has practical values, and has also reference values for understanding ODSS and for theoretical studies.
文摘Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptual design, introducing the theory of inventive problem solving (TRIZ) into the mechanical product design for producing innovative ideas, and using the advanced computer-aided technique, the intelligent decision support system (IDSS) based on TRIZ (TRIZ-IDSS) has been constructed. The construction method, system structure, conceptual production, decisionmaking and evaluation of the problem solving subsystem are discussed. The innovative conceptual design of pumping units indicates that the system can help the engineers open up a new space of thinking, overcome the thinking inertia, and put forward innovative design concepts. This system also can offer the scientific instructions for the innovative design of mechanical products.
文摘Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point method is used to solve the complicated and large scale problems of making and adjusting train schedule. This paper focuses on the principle and framework of the model base, knowledge base of train diagram. It is shown that the TDIMODSS can solve the problems and their uncertainty in making train diagram, and can combine the expert knowledge, experience and judgement of a decision maker into the system. In addition to that, a friendly working environment is also presented, which brings together the human judgement, the adaptability to environment and the computerised information.
基金Supported by National"863"High-tech Project(2006AA10A309)Jilin Technology Gallery Key Project(20060213)~~
文摘In order to solve the problem of the maze precision fertilizer,soil fertility evaluation,soil fertility classify and yield projections,the geographic information system with spatial information processing functions,spatial data mining techniques with spatial information analysis capabilities,expert system technology in the field of artificial intelligence,traditional information management systems and decision support system were effectively integrated in this study,and the statistical analysis method of GIS and data visualization were combined to design and implement the maize precise intelligent space decision-making system.This system had greatly improved the decision-making ability in agricultural production carried out by agricultural management.
文摘Based on platform of GIS software ArcView and theory of management information system(MIS), a decision support system on urban landscape planning was designed via GIS technology, module design technique and object-oriented programming technique. The function of this system is realized by its two subsystems—one is for height limit model of city and another is for landscape belt planning, which can help administors in landscape planning.
基金Supported by the Technology R&D Program of Hebei Province,China~~
文摘[Objective] This study was to provide methods to improve the scientificity and informatization level of agricultural decision-making system based on the study of Decision Support System for "Northing of Winter Wheat" in Hebei Province (DSS- NWWH). [Method] The functions, development process, operation guidance as well as input and output modes of DSSNWWH were introduced, and the simulated results of the system were verified by comparing with the actual situations. [Result] The decision support system established in this study could predict whether a wheat variety could live through the winter in a certain area of northern Hebei Province, as well as the growth conditions based on the previous meteorological data or local weather forecast, and provided corresponding cultivation and management measures, making it possible for the user to determine whether the variety could be planted in the region based on the predictions. [Conclusion] The established DSSNWWH in this study can effectively help decision makers make decisions, providing scientific instructions for the northing of winter wheat.
文摘The focus of this paper is on a new concept framework and an architecture of an intelligent decision support syetem generator (DSSG). The framework results from a synthesis of two existing frameworks: Spragae and Bonczek, while the architecture is a rooted partial order network. From our experience which comes out of the project of DSSG, we consider that they are keys of further research and development of DSS.
文摘Considering some drawbacks of the mainstream approach to environmental management (EM),the conception and basic idea of Participatory EM(PEM) are put forward.PEM possesses some main features and benefits that are superior to the mainstream approach,but also faces the crucial constraint in decision-making.The dilemma can be effectively settled by applying an advanced decision-making support tool-group decision support system(GDSS).On the basis of recognizing the complex decision-making environment of PEM,this paper describes the components of GDSS for PEM(PEM-GDSS) and further discusses the basic requirement of PEM-GDSS.
基金Supported by the National Science & Technology Pillar Program(2006BAJ07B07)
文摘The framework of the assistant decision support system of cross-regional rural labor flow is established,the system combines the cross-regional rural labor flow with DSS,which provides the leaders with the maximum assistant decision-making function in the regulation and guidance of rural labors as well as in relevant programs.The assistant decision support system functions are discussed,the function modules of this system are introduced from four aspects,including the analysis of labor flow,the prediction of labor flow,the regulation of cross-regional flow and the configuration of decision support system;based on the data base obtained from dynamic tracking of the migrant workers and combining other data sources,the data warehouse model is established,for example,in the analysis of the labor migration times,a star multi-dimensional data model is designed from the time dimension,place dimension,the type of work dimension,accompaniers dimension and so on;the trans-regional flow of rural labor force is analyzed and predicted by using OLAP from the labor's migration times,migration places and other various perspectives.The operation principles of the assistant decision support system of trans-regional labor flow are introduced,it is pointed out that the system serves the policy-makers of the regulation of labor flow and other relevant enterprises,the system will play an important role in the tracking monitoring and cross-regional regulation of the rural labor flow.
基金Project (No. 02CDP036) supported by the Royal Netherlands Academy of Arts and Sciences (KNAW), the Netherlands
文摘For river basin management, the reliability of the rating curves mainly depends on the accuracy and time period of the observed discharge and water level data. In the Elbe decision support system (DSS), the rating curves are combined with the HEC-6 model to investigate the effects of river engineering measures on the Elbe River system. In such situations, the uncertainty originating from the HEC-6 model is of significant importance for the reliability of the rating curves and the corresponding DSS results. This paper proposes a two-step approach to analyze the uncertainty in the rating curves and propagate it into the Elbe DSS: analytic method and Latin Hypercube simulation. Via this approach the uncertainty and sensitivity of model outputs to input parameters are successfully investigated. The results show that the proposed approach is very efficient in investigating the effect of uncertainty and can play an important role in improving decision-making under uncertainty.
文摘An expert decision support system (EDSS) for multi-bins balance and contro1 of orequality in production ore bins of some large-scale open pit iron mine in China has been developed byexpert svitem tool software VP-EXPERT and integration software LOTUS 1-2-3 in this paper. Itis known by practicing that a medium-scale EDSS constructed on microcomputer is completcly, feaasible by means of VP-EXEPERT to construct knowledge base system (KBS), LOTUS 1-2-3 tomake decision support system (DSS) and link them with BAT.
文摘With the worldwide analysis,heart disease is considered a significant threat and extensively increases the mortality rate.Thus,the investigators mitigate to predict the occurrence of heart disease in an earlier stage using the design of a better Clinical Decision Support System(CDSS).Generally,CDSS is used to predict the individuals’heart disease and periodically update the condition of the patients.This research proposes a novel heart disease prediction system with CDSS composed of a clustering model for noise removal to predict and eliminate outliers.Here,the Synthetic Over-sampling prediction model is integrated with the cluster concept to balance the training data and the Adaboost classifier model is used to predict heart disease.Then,the optimization is achieved using the Adam Optimizer(AO)model with the publicly available dataset known as the Stalog dataset.This flowis used to construct the model,and the evaluation is done with various prevailing approaches like Decision tree,Random Forest,Logistic Regression,Naive Bayes and so on.The statistical analysis is done with theWilcoxon rank-summethod for extracting the p-value of the model.The observed results show that the proposed model outperforms the various existing approaches and attains efficient prediction accuracy.This model helps physicians make better decisions during complex conditions and diagnose the disease at an earlier stage.Thus,the earlier treatment process helps to eliminate the death rate.Here,simulation is done withMATLAB 2016b,and metrics like accuracy,precision-recall,F-measure,p-value,ROC are analyzed to show the significance of the model.
基金This work is supported in part by the Major Fundamental Research of Natural Science Foundation of Shandong Province under Grant ZR2019ZD05Joint Fund for Smart Computing of Shandong Natural Science Foundation under Grant ZR2020LZH013+1 种基金the Scientific Research Platform and Projects of Department of Education of Guangdong Province under Grant 2019GKQNCX121the Intelligent Perception and Computing Innovation Platform of the Shenzhen Institute of Information Technology under Grant PT2019E001.
文摘Contribution:This paper designs a learning and training platform that can systematically help radiologists learn automated medical image analysis technology.The platform can help radiologists master deep learning theories and medical applications such as the three-dimensional medical decision support system,and strengthen the teaching practice of deep learning related courses in hospitals,so as to help doctors better understand deep learning knowledge and improve the efficiency of auxiliary diagnosis.Background:In recent years,deep learning has been widely used in academia,industry,andmedicine.An increasing number of companies are starting to recruit a large number of professionals in the field of deep learning.Increasing numbers of colleges and universities also offer courses related to deep learning to help radiologists learn automated medical image analysis techniques.For now,however,there is no practical training platform that can help radiologists learn automated medical image analysis systematically.ApplicationDesign:The platform proposes the basic learning,model combat,business application(BMR)concept,including the learning guidance system and the assessment training system,which constitutes a closed-loop learning guidance mode of“learning-assessment-training-learning”.Findings:The survey results show that most of radiologists met their learning expectations by using this platform.The platform can help radiologists master deep learning techniques quickly,comprehensively and firmly.
文摘Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r Aided Process Planning (CAPP) is a step in this direction. Most of the existin g CAPP systems do not consider scheduling while generating a process plan. Sched uling is done separately after the process plan has been generated and therefore , it is possible that a process plan so generated is either not optimal or feasi ble from scheduling point of view. As process plans are generated without consid eration of job shop status, many problems arise within the manufacturing environ ment. Investigations have shown that 20%~30% of all process plans generated are not valid and have to be altered or suffer production delays when production sta rts. There is thus a major need for integration of scheduling with computer aide d process planning for generating more realistic process plans. In doing so, eff iciency of the manufacturing system as a whole is expected to improve. Decision support system performs many functions such as selection of machine too ls, cutting tools, sequencing of operations, determination of optimum cutting pa rameters and checking availability of machine tool before allocating any operati on to a machine tool. The process of transforming component data, process capabi lity and decision rules into computer readable format is still a major obstacle. This paper proposes architecture of a system, which integrates computer aided p rocess-planning system with scheduling using decision support system. A decisio n support system can be defined as " an interactive system that provides the use rs with easy access to decision models in order to support semi-structured or u nstructured decision making tasks".
文摘Stroke is characterized by high incidence,high recurrence,high disability,and high morbidity and mortality in China,resulting in a heavy social and clinical burden.A clinical decision support system,as an intelli-gent computer system,can assist nurses in decision-mak-ing to collect information quickly,make the most suitable personalized decisions for patients,and improve nurses’decision-making judgment and quality of care.Promoting the development and application of decision support sys-tems in stroke nursing significantly enhances the nursing staff’s work quality and patients’prognosis.Therefore,this paper reviews the research progress of domestic and international clinical decision support systems in stroke nursing care to provide other researchers with specific research directions for developing and applying decision support systems in stroke nursing care.
基金support provided by Co-mision Nacional de Investigacion Cientifica y Tecnologica(CONICYT),through FONDECYT project 1110 798:“Determinacion de indicadores geograficoambien-tales y de riesgo natural en el paisaje de La Araucania y Los Rios:Herramientas de soporte decisional para la planificacion y gestion territorial en sistemas costeros”.
文摘Coastal zones are very dynamic and fragile environments, constituting a landscape ever more heterogeneous, fragmented and with increasing levels of complexity due to the changing relationship between man and nature. Integrated coastal zone management therefore requires detailed knowledge of the system and its components, based—to a large extent—on technical and scientific information. However, the information generated must be in line with the political requirements necessary for decision-making and planning. Thus the use of indicators to give a simplified view of the many components of the territory, and at the same time to provide important information about patterns or trends, becomes a tool of the utmost importance. These indicators can be understood as measurable characteristics of the environment, which facilitate comprehension of the processes occurring at different scales and serve as a reference to inform the population and support decision-making. The aim of the present note is to demonstrate briefly the need to develop geographical-environmental and natural risk indicators to facilitate comprehension of the dynamic of spatial and temporal landscape patterns, particularly in coastal environments. This approach offers an historical summary of the natural, socio-economic and political processes which currently make up the territory, and which without doubt will continue to influence it in the future. At the same time, it is proposed that information should be integrated on the basis of this framework with a view to generating spatial decision support systems in a context of planning and integrated management of the coastal zones of Chile.