期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Recent improvements of actuator line-large-eddy simulation method for wind turbine wakes 被引量:3
1
作者 Zhiteng GAO Ye LI +2 位作者 Tongguang WANG Shitang KE Deshun LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第4期511-526,共16页
In a large wind farm,the wakes of upstream and downstream wind turbines can interfere with each other,affecting the overall power output of the wind farm.To further improve the numerical accuracy of the turbine wake d... In a large wind farm,the wakes of upstream and downstream wind turbines can interfere with each other,affecting the overall power output of the wind farm.To further improve the numerical accuracy of the turbine wake dynamics under atmosphere turbulence,this work proposes some improvements to the actuator line-large-eddy simulation(AL-LES)method.Based on the dynamic k-equation large-eddy simulation(LES),this method uses a precursor method to generate atmospheric inflow turbulence,models the tower and nacelle wakes,and improves the body force projection method based on an anisotropic Gaussian distribution function.For these three improvements,three wind tunnel experiments are used to validate the numerical accuracy of this method.The results show that the numerical results calculated in the far-wake region can reflect the characteristics of typical onshore and offshore wind conditions compared with the experimental results.After modeling the tower and nacelle wakes,the wake velocity distribution is consistent with the experimental result.The radial migration velocity of the tip vortex calculated by the improved blade body force distribution model is 0.32 m/s,which is about 6%different from the experimental value and improves the prediction accuracy of the tip vortex radial movement.The method proposed in this paper is very helpful for wind turbine wake dynamic analysis and wind farm power prediction. 展开更多
关键词 actuator line(AL)method large-eddy simulation(LES) WAKE tip vortex wind turbine
下载PDF
Piezoelectric Actuator/Sensor Wave Propagation Based Nondestructive Active Monitoring Method of Concrete Structures 被引量:5
2
作者 朱劲松 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期541-547,共7页
In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a ... In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a specifically designed test setup.The energy attenuation of stress waves was measured by the relative index between the output voltage of sensors and the excitation voltage at the actuator.Based on the experimental results of concrete cube and cylinder specimens,the effect of excitation frequencies,excitation amplitude,wave propagation paths and the curing age on the output signals of sensors are evaluated.The results show that the relative voltage attenuation coefficient RVAC is an effective indicator for measuring the attenuation of stress waves through the interior of concrete. 展开更多
关键词 piezoceramics actuator/sensor wave propagation method non-destructive evaluation (NDE) active monitoring concrete
下载PDF
Analytical modeling of static behavior of electrostatically actuatednano/micromirrors considering van der Waals forces 被引量:4
3
作者 Hamid Moeenfard Mohammad Taghi Ahmadian 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期729-736,共8页
In this paper, the effect of van der Waals (vdW) force on the pull-in behavior of electrostatically actuated nano/micromirrors is investigated. First, the minimum po- tential energy principle is utilized to find the... In this paper, the effect of van der Waals (vdW) force on the pull-in behavior of electrostatically actuated nano/micromirrors is investigated. First, the minimum po- tential energy principle is utilized to find the equation gov- erning the static behavior of nano/micromirror under electro- static and vdW forces. Then, the stability of static equilib- rium points is analyzed using the energy method. It is found that when there exist two equilibrium points, the smaller one is stable and the larger one is unstable. The effects of dif- ferent design parameters on the mirror's pull-in angle and pull-in voltage are studied and it is found that vdW force can considerably reduce the stability limit of the mirror. At the end, the nonlinear equilibrium equation is solved numer- ically and analytically using homotopy perturbation method (HPM). It is observed that a sixth order perturbation approx- imation can precisely model the mirror's behavior. The re- suits of this paper can be used for stable operation design and safe fabrication of torsional nano/micro actuators. 展开更多
关键词 Nano/micromirror Electrostatic actuation vdW force Pull-in. Homotopy perturbation method (HPM)
下载PDF
Influence of air pressure on the performance of plasma synthetic jet actuator 被引量:1
4
作者 李洋 贾敏 +4 位作者 吴云 李应红 宗豪华 宋慧敏 梁华 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期429-436,共8页
Plasma synthetic jet actuator(PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity.In this paper,the influence of the air pressure on the performance of a two-electrod... Plasma synthetic jet actuator(PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity.In this paper,the influence of the air pressure on the performance of a two-electrode PSJA is investigated by the schlieren method in a large range from 7 k Pa to 100 k Pa.The energy consumed by the PSJA is roughly the same for all the pressure levels.Traces of the precursor shock wave velocity and the jet front velocity vary a lot for different pressures.The precursor shock wave velocity first decreases gradually and then remains at 345 m/s as the air pressure increases.The peak jet front velocity always appears at the first appearance of a jet,and it decreases gradually with the increase of the air pressure.A maximum precursor shock wave velocity of 520 m/s and a maximum jet front velocity of 440 m/s are observed at the pressure of 7 k Pa.The averaged jet velocity in one period ranges from 44 m/s to 54 m/s for all air pressures,and it drops with the rising of the air pressure.High velocities of the precursor shock wave and the jet front indicate that this type of PSJA can still be used to influence the high-speed flow field at 7 k Pa. 展开更多
关键词 plasma synthetic jet actuator air pressure performance schlieren method
下载PDF
FEM COUPLING FIELD ITERATION AND ITS CONVERGENCE FOR A GMM ACTURATOR 被引量:2
5
作者 CaoZhiton CaiJiongjiong ChenHongping HeGuoguang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第1期79-82,共4页
The coupling iteration (CI) of the finite element method(FEM) is used to simulate the magnetic and mechanical characteristics for a GMM actuator. The convergent ability under different prestress and different load typ... The coupling iteration (CI) of the finite element method(FEM) is used to simulate the magnetic and mechanical characteristics for a GMM actuator. The convergent ability under different prestress and different load types is investigated. Then the calculated deformations are compared with the experimental values. The results convince that the CI of FEM is suitable for the simulation of energy coupling and transformation mechanism of the GMM. At last, the output deformation properties are studied under different input currents, showing that there is a good compromise between good linearity and large strain under the prestress 6 MPa. 展开更多
关键词 Giant magnetostrictive materials(GMM) Energy coupling and transformation Coupling iteration (CI) Finite element method (FEM) Actuator
下载PDF
Robust Adaptive Actuator Failure Compensation for a Class of Uncertain Nonlinear Systems 被引量:3
6
作者 Mahnaz Hashemi Javad Askari +1 位作者 Jafar Ghaisari Marzieh Kamali 《International Journal of Automation and computing》 EI CSCD 2017年第6期719-728,共10页
This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compe... This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compensates a general class of actuator failures without any need for explicit fault detection. The parameters, times, and patterns of the considered failures are completely unknown. The proposed controller is constructed based on a backstepping design method. The global boundedness of all the closed-loop signals is guaranteed and the tracking error is proved to converge to a small neighborhood of the origin. The proposed approach is employed for a two-axis positioning stage system as well as an aircraft wing system. The simulation results show the correctness and effectiveness of the proposed robust adaptive actuator failure compensation approach. 展开更多
关键词 Time varying actuator failure nonlinear systems robust adaptive control compensation backstepping design method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部