Due to actuator time delay existing in an adaptive control of the active balancing system for a fast speed-varying Jeffcott rotor, if an unsynchronized control force (correction imbalance) is applied to the system, it...Due to actuator time delay existing in an adaptive control of the active balancing system for a fast speed-varying Jeffcott rotor, if an unsynchronized control force (correction imbalance) is applied to the system, it may lead to degradation in control efficiency and instability of the control system. In order to avoid these shortcomings, a simple adaptive controller was designed for a strictly positive real rotor system with actuator time delay, then a Lyapunov-Krasovskii functional was constructed after an appropriate transform of this sys-tem model, the stability conditions of this adaptive control system with actuator time delay were derived. After adding a filter function, the active balancing system for the fast speed-varying Jeffcott rotor with actuator time delay can easily be converted to a strictly positive real system, and thus it can use the above adaptive controller satisfying the stability conditions. Finally, numerical simulations show that the adaptive controller proposed works very well to perform the active balancing for the fast speed-varying Jeffcott rotor with actuator time delay.展开更多
This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compe...This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compensates a general class of actuator failures without any need for explicit fault detection. The parameters, times, and patterns of the considered failures are completely unknown. The proposed controller is constructed based on a backstepping design method. The global boundedness of all the closed-loop signals is guaranteed and the tracking error is proved to converge to a small neighborhood of the origin. The proposed approach is employed for a two-axis positioning stage system as well as an aircraft wing system. The simulation results show the correctness and effectiveness of the proposed robust adaptive actuator failure compensation approach.展开更多
文摘Due to actuator time delay existing in an adaptive control of the active balancing system for a fast speed-varying Jeffcott rotor, if an unsynchronized control force (correction imbalance) is applied to the system, it may lead to degradation in control efficiency and instability of the control system. In order to avoid these shortcomings, a simple adaptive controller was designed for a strictly positive real rotor system with actuator time delay, then a Lyapunov-Krasovskii functional was constructed after an appropriate transform of this sys-tem model, the stability conditions of this adaptive control system with actuator time delay were derived. After adding a filter function, the active balancing system for the fast speed-varying Jeffcott rotor with actuator time delay can easily be converted to a strictly positive real system, and thus it can use the above adaptive controller satisfying the stability conditions. Finally, numerical simulations show that the adaptive controller proposed works very well to perform the active balancing for the fast speed-varying Jeffcott rotor with actuator time delay.
基金supported by Esfahan Regional Electric Company(EREC)
文摘This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compensates a general class of actuator failures without any need for explicit fault detection. The parameters, times, and patterns of the considered failures are completely unknown. The proposed controller is constructed based on a backstepping design method. The global boundedness of all the closed-loop signals is guaranteed and the tracking error is proved to converge to a small neighborhood of the origin. The proposed approach is employed for a two-axis positioning stage system as well as an aircraft wing system. The simulation results show the correctness and effectiveness of the proposed robust adaptive actuator failure compensation approach.