This paper investigates the coordinated attitude control problem for flexible spacecraft formation with the consideration of actuator configuration misalignment.First,an integral-type sliding mode adaptive control law...This paper investigates the coordinated attitude control problem for flexible spacecraft formation with the consideration of actuator configuration misalignment.First,an integral-type sliding mode adaptive control law is designed to compensate the effects of flexible mode,environmental disturbance and actuator installation deviation.The basic idea of the Integral-type Sliding Mode Control(ISMC)is to design a proper sliding manifold so that the sliding mode starts from the initial time instant,and thus the robustness of the system can be guaranteed from the beginning of the process and the reaching phase is eliminated.Then,considering the nominal system of spacecraft formation based on directed topology,an attitude cooperative control strategy is developed for the nominal system with or without communication delay.The proposed control law can guarantee that for each spacecraft in the spacecraft formation,the desired attitude objective can be achieved and the attitude synchronization can be maintained with other spacecraft in the formation.Finally,simulation results are given to show the effectiveness of the proposed control algorithm.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61833009,61690212 and 51875119)the National Key Research and Development Project(No.2016YFB0501203)。
文摘This paper investigates the coordinated attitude control problem for flexible spacecraft formation with the consideration of actuator configuration misalignment.First,an integral-type sliding mode adaptive control law is designed to compensate the effects of flexible mode,environmental disturbance and actuator installation deviation.The basic idea of the Integral-type Sliding Mode Control(ISMC)is to design a proper sliding manifold so that the sliding mode starts from the initial time instant,and thus the robustness of the system can be guaranteed from the beginning of the process and the reaching phase is eliminated.Then,considering the nominal system of spacecraft formation based on directed topology,an attitude cooperative control strategy is developed for the nominal system with or without communication delay.The proposed control law can guarantee that for each spacecraft in the spacecraft formation,the desired attitude objective can be achieved and the attitude synchronization can be maintained with other spacecraft in the formation.Finally,simulation results are given to show the effectiveness of the proposed control algorithm.