For general dynamic positioning systems,controllers are mainly based on the feedback of motions only in the horizontal plane.However,for marine structures with a small water plane area and low metacentric height,undes...For general dynamic positioning systems,controllers are mainly based on the feedback of motions only in the horizontal plane.However,for marine structures with a small water plane area and low metacentric height,undesirable surge and pitch oscillations may be induced by the thruster actions.In this paper,three control laws are investigated to suppress the induced pitch motion by adding pitch rate,pitch angle or pitch acceleration into the feedback control loop.Extensive numerical simulations are conducted with a semi-submersible platform for each control law.The influences of additional terms on surge−pitch coupled motions are analyzed in both frequency and time domain.The mechanical constraints of the thrust allocation and the frequency characters of external forces are simultaneously considered.It is concluded that adding pitch angle or pitch acceleration into the feedback loop changes the natural frequency in pitch,and its performance is highly dependent on the frequency distribution of external forces,while adding pitch rate into the feedback loop is always effective in mitigating surge−pitch coupled motions.展开更多
This paper proposes a guaranteed feasible control allocation method based on the model predictive control. Feasible region is considered to guarantee the determination of the desired virtual control signal using the p...This paper proposes a guaranteed feasible control allocation method based on the model predictive control. Feasible region is considered to guarantee the determination of the desired virtual control signal using the pseudo inverse methodology and is described as a set of constraints of an MPC problem. With linear models and the given constraints, feasible region defines a convex polyhedral in the virtual control space. In order to reduce the computational time, the polyhedral can be approximated by a few axis alig ned hypercubes. Employing the MPC with rectangular constraints substantially reduces the computational complexity .In two dimensions, the feasible region can be approximated by a few rectangles of the maximum area using numerical geometry techniques which are considered as the constraints of the MPC problem. Also, an active MPC is defined as the controller to minimize the cost function in the control horizon. Finally, several simulation examples are employed to illustrate the effectiveness of the proposed techniques.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51179103 and 51979167)the Ministry of Industry and Information Technology(Grant No.[2016]22)the Hainan Provincial Joint Project of Sanya Bay Science and Technology City(Grant No.520LH051).
文摘For general dynamic positioning systems,controllers are mainly based on the feedback of motions only in the horizontal plane.However,for marine structures with a small water plane area and low metacentric height,undesirable surge and pitch oscillations may be induced by the thruster actions.In this paper,three control laws are investigated to suppress the induced pitch motion by adding pitch rate,pitch angle or pitch acceleration into the feedback control loop.Extensive numerical simulations are conducted with a semi-submersible platform for each control law.The influences of additional terms on surge−pitch coupled motions are analyzed in both frequency and time domain.The mechanical constraints of the thrust allocation and the frequency characters of external forces are simultaneously considered.It is concluded that adding pitch angle or pitch acceleration into the feedback loop changes the natural frequency in pitch,and its performance is highly dependent on the frequency distribution of external forces,while adding pitch rate into the feedback loop is always effective in mitigating surge−pitch coupled motions.
文摘This paper proposes a guaranteed feasible control allocation method based on the model predictive control. Feasible region is considered to guarantee the determination of the desired virtual control signal using the pseudo inverse methodology and is described as a set of constraints of an MPC problem. With linear models and the given constraints, feasible region defines a convex polyhedral in the virtual control space. In order to reduce the computational time, the polyhedral can be approximated by a few axis alig ned hypercubes. Employing the MPC with rectangular constraints substantially reduces the computational complexity .In two dimensions, the feasible region can be approximated by a few rectangles of the maximum area using numerical geometry techniques which are considered as the constraints of the MPC problem. Also, an active MPC is defined as the controller to minimize the cost function in the control horizon. Finally, several simulation examples are employed to illustrate the effectiveness of the proposed techniques.