Actuator Disks(AD)can provide characterizations of rotor wakes while reducing computational expense associated with modeling the fully resolved blades.This work presents an unsteady actuator disk method based on surfa...Actuator Disks(AD)can provide characterizations of rotor wakes while reducing computational expense associated with modeling the fully resolved blades.This work presents an unsteady actuator disk method based on surface circulation distribution combined with empirical data,blade element theory and rotor momentum theory.The nonuniform circulation distribution accounts for 3 D blade load effects,and in particular,tip loses.Numerical simulations were conducted for the isolated pressure sensitive paint model rotor blade in hover and forward flight using the HMB3 CFD solver of Glasgow University.Validation of CFD results in comparison with published numerical data was performed in hover,for a range of blade pitch angles using fully turbulent flow and the k-x SST model.In forward flight,the vortex structures predicted using the unsteady actuator disk model showed configurations similar to the ones obtained using fully resolved rotor blades.Despite the reduced grid cells number,the CFD results for AD models captured well the main vortical structures around the rotor disk in comparison to the fully resolved cases.展开更多
There is a growing interest in propellers for transport aircraft as well as regional airliners from the viewpoint of energy saving. An important consideration for utilizing a propeller propulsion system on aircraft is...There is a growing interest in propellers for transport aircraft as well as regional airliners from the viewpoint of energy saving. An important consideration for utilizing a propeller propulsion system on aircraft is the aerodynamic interaction between the propeller slipstream and other aerodynamic surfaces. It is therefore necessary to use a simplified but relatively accurate tool for propeller modeling, with the widely used actuator disk model. The advantage of this model is that it is easy to use and inex- pensive in terms of computation time required. In addition, it also produces acceptable results. In this study, a new regionalized actuator disk model was utilized in the analysis of propeller slipstream interference effects on a real four-propeller aircraft. The results are compared with the cases of inactive actuator disks, which shows that the propeller slipstream causes an increase in the lift and drag coefficients. An evident yawing effect caused by the rotating slipstream was noticed, which should be taken into account in the design phase. The regionalized actuator disk model is evaluated as a fast and relatively accurate model for propeller preliminary design.展开更多
The actuator disc method is an engineering approach to reduce computer resources in computational fluid dynamics(CFD)simulations of helicopter rotors or aeroplane propellers.Implementation of an actuator disc based on...The actuator disc method is an engineering approach to reduce computer resources in computational fluid dynamics(CFD)simulations of helicopter rotors or aeroplane propellers.Implementation of an actuator disc based on rotor circulation distribution allows for approximations to be made while reproducing the blade tip vortices.Radial circulation distributions can be formulated according to the nonuniform Heyson-Katzoff“typical load”in hover.In forward flight,the nonuniform disk models include“azimuthal”sin and cos terms to reproduce the blade cyclic motion.The azimuthal circulation distribution for a forward flight mode corresponds to trimmed conditions for the disk rolling and pitching moments.The amplitude of the cos harmonic is analysed and compared here with presented in references data and CFD simulations results.展开更多
Flow around a real-life underwater vehicle often happens at a high Reynolds number with flow structures at different scales from the boundary layer around a blade to that around the hull. This poses a great challenge ...Flow around a real-life underwater vehicle often happens at a high Reynolds number with flow structures at different scales from the boundary layer around a blade to that around the hull. This poses a great challenge for large-eddy simulation of an underwater vehicle aiming at resolving all relevant flow scales. In this work, we propose to model the hull with appendages using the immersed boundary method, and model the propeller using the actuator disk model without resolving the geometry of the blade. The proposed method is then applied to simulate the flow around Defense Advanced Research Projects Agency(DARPA) suboff. An overall acceptable agreement is obtained for the pressure and friction coefficients. Complex flow features are observed in the near wake of suboff. In the far wake, the core region is featured by a jet because of the actuator disk, surrounded by an annular region with velocity deficit due to the body of suboff.展开更多
The concentration distribution of urban air pollutants is closely related to people’s health.As an important utilization form of urban wind power,rooftop wind turbines have been widely used in cities.The wake effect ...The concentration distribution of urban air pollutants is closely related to people’s health.As an important utilization form of urban wind power,rooftop wind turbines have been widely used in cities.The wake effect of the rooftop wind turbines will change the flow behind buildings and then affect the pollutant dispersion.To this end,the pollutant dispersion behind the building is studied via the computational fluid dynamics method.The actuator disk model and idealized cube are adopted to model the wind turbine and the building,respectively.The study shows that the rooftop wind turbine can reduce the pollutant mass fraction near the ground and the pedestrian level.Due to the wake effect of the rooftop wind turbine,the turbulent fluctuation behind the building is weakened,and the spanwise pollutant dispersion is suppressed.Besides,the rooftop wind turbine weakens the downwash movement of the building,which enhances the vertical pollutant dispersion.展开更多
With the increased penetration of wind energy in our nation’s energy portfolio, wind farms are placed in a way close to each other. Thus, their wakes have to be fully considered in the design and operation of a wind ...With the increased penetration of wind energy in our nation’s energy portfolio, wind farms are placed in a way close to each other. Thus, their wakes have to be fully considered in the design and operation of a wind farm. In this study, we investigate the wake of a wind farm using large-eddy simulation with wind turbine rotor modelled by the actuator disk model. The simulated results show that the wake of a wind farm can persist for a long distance in its downstream. For the considered wind farm layout, the velocity in the wake recovers 95% of that of the undisturbed inflow at 55 rotor diameters downstream from its last row, suggesting that the wake of a wind farm should be fully considered in the optimal design and operation for its downstream wind farms.展开更多
In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in ...In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in the atmospheric boundary layer (ABL) because the ABL is mainly governed by turbulent motions. We also demonstrate that the stream tube model customarily applied to derive the Rankine-Froude theorem must be corrected in the sense of Glauert to provide an appropriate value for the axial velocity at the rotor area. Including this correction leads to the Betz-Joukowsky limit, the maximum efficiency of 59.3 percent. Thus, Gorban’ et al.’s 30% value may be valid in water, but it has to be discarded for the atmosphere. We also show that Joukowsky’s constant circulation model leads to values of the maximum efficiency which are higher than the Betz-Jow-kowsky limit if the tip speed ratio is very low. Some of these values, however, have to be rejected for physical reasons. Based on Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sørensen we also illustrate that the maximum efficiency of propeller-type wind turbines depends on tip-speed ratio and the number of blades.展开更多
In the present paper, a nonlinear multi 'actuator disk' model is proposed to analyze the dynamicbehavior of flow instabilities, including rotating stall and surge, in high speed multistage axial compressors. T...In the present paper, a nonlinear multi 'actuator disk' model is proposed to analyze the dynamicbehavior of flow instabilities, including rotating stall and surge, in high speed multistage axial compressors. The model describes the duct flow fields using two dimensional, compressible and unsteadyEuler equations, and accounts for the influences of downstream plenum and throttle in the system aswell. It replaces each blade row of multistage compressors with a disk. For numerical calculations,the time marching procedure, using MacCormack two steps scheme, is used. The main purpose of thispaper is to predict the mechanism of two dimensional short wavelength rotating stall inception and theinteraction between blade rows in high speed multistage compressors. It has been demonstrated thatthe model has the ability to predict those phenomena, and the results show that some system parameters have a strong effect on the stall features as well. Results for a five stage high speed compressorare analyzed in detail, and comparison with the experimental data demonstrates that the model andcalculating results are reliable.展开更多
This paper presents a comparison among different hydrodynamic models for the analysis of the unsteady loads delivered by a marine propeller working in an axial, non-uniform inflow. Specifically, for a propeller subjec...This paper presents a comparison among different hydrodynamic models for the analysis of the unsteady loads delivered by a marine propeller working in an axial, non-uniform inflow. Specifically, for a propeller subjected to a wake-field dominated by local high-frequency changes in space, the unsteady hydroloads predicted by the Nakatake formulation are compared with those given by the Theodorsen and Sears theories, respectively. Drawbacks and potentialities of these approaches are highlighted to assess a computationally efficient hydrodynamic solver for the analysis of operating conditions where propeller blades are significantly perturbed by a multi-harmonic onset-flow. Guidelines coming from this investigation may drive the choice of a fast and reliable unsteady propeller modeling that represents a good trade-off between accuracy of simulation and cost of computation within implementation in Computational Fluid Dynamics (CFD) solvers. The hydrodynamic formulations herein proposed are validated through numerical comparisons with the (accurate but computationally expensive) propeller loads predicted by a fully 3-D panel-method Boundary Element Method (BEM) solver, suited for the analysis of propellers operating in a complex hydrodynamic environment.展开更多
基金co-supported by the grant‘‘State task of the Education and Science Ministry of Russian Federation”agreement(No.075-03-2020-051/3 from 09.06.2020,theme No.fzsu-2020-0021)。
文摘Actuator Disks(AD)can provide characterizations of rotor wakes while reducing computational expense associated with modeling the fully resolved blades.This work presents an unsteady actuator disk method based on surface circulation distribution combined with empirical data,blade element theory and rotor momentum theory.The nonuniform circulation distribution accounts for 3 D blade load effects,and in particular,tip loses.Numerical simulations were conducted for the isolated pressure sensitive paint model rotor blade in hover and forward flight using the HMB3 CFD solver of Glasgow University.Validation of CFD results in comparison with published numerical data was performed in hover,for a range of blade pitch angles using fully turbulent flow and the k-x SST model.In forward flight,the vortex structures predicted using the unsteady actuator disk model showed configurations similar to the ones obtained using fully resolved rotor blades.Despite the reduced grid cells number,the CFD results for AD models captured well the main vortical structures around the rotor disk in comparison to the fully resolved cases.
基金supported by the Key Projects in the National Science&Technology Pillar Program during the Eleventh Five-Year Plan Period(Grant No.2009BAG12A01)
文摘There is a growing interest in propellers for transport aircraft as well as regional airliners from the viewpoint of energy saving. An important consideration for utilizing a propeller propulsion system on aircraft is the aerodynamic interaction between the propeller slipstream and other aerodynamic surfaces. It is therefore necessary to use a simplified but relatively accurate tool for propeller modeling, with the widely used actuator disk model. The advantage of this model is that it is easy to use and inex- pensive in terms of computation time required. In addition, it also produces acceptable results. In this study, a new regionalized actuator disk model was utilized in the analysis of propeller slipstream interference effects on a real four-propeller aircraft. The results are compared with the cases of inactive actuator disks, which shows that the propeller slipstream causes an increase in the lift and drag coefficients. An evident yawing effect caused by the rotating slipstream was noticed, which should be taken into account in the design phase. The regionalized actuator disk model is evaluated as a fast and relatively accurate model for propeller preliminary design.
基金Work of Russian coauthors was supported by the grant"FZSU-2020-0021"(No.075-03-2020-051/3 from 09.06.2020)of the Min-istry of Education and Science of the Russian Federation.
文摘The actuator disc method is an engineering approach to reduce computer resources in computational fluid dynamics(CFD)simulations of helicopter rotors or aeroplane propellers.Implementation of an actuator disc based on rotor circulation distribution allows for approximations to be made while reproducing the blade tip vortices.Radial circulation distributions can be formulated according to the nonuniform Heyson-Katzoff“typical load”in hover.In forward flight,the nonuniform disk models include“azimuthal”sin and cos terms to reproduce the blade cyclic motion.The azimuthal circulation distribution for a forward flight mode corresponds to trimmed conditions for the disk rolling and pitching moments.The amplitude of the cos harmonic is analysed and compared here with presented in references data and CFD simulations results.
基金supported by the National Natural Science Foundation of China(NSFC)Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)NSFC(No.12002345)China Postdoctoral Science Foundation(No.2020M680027)。
文摘Flow around a real-life underwater vehicle often happens at a high Reynolds number with flow structures at different scales from the boundary layer around a blade to that around the hull. This poses a great challenge for large-eddy simulation of an underwater vehicle aiming at resolving all relevant flow scales. In this work, we propose to model the hull with appendages using the immersed boundary method, and model the propeller using the actuator disk model without resolving the geometry of the blade. The proposed method is then applied to simulate the flow around Defense Advanced Research Projects Agency(DARPA) suboff. An overall acceptable agreement is obtained for the pressure and friction coefficients. Complex flow features are observed in the near wake of suboff. In the far wake, the core region is featured by a jet because of the actuator disk, surrounded by an annular region with velocity deficit due to the body of suboff.
基金supported by the National Natural Science Foun-dation of China(Nos.11772128 and 11772266)the State Key Laboratory for Alternative Electrical Power System with Renewable Energy Sources(No.LAPS202107).
文摘The concentration distribution of urban air pollutants is closely related to people’s health.As an important utilization form of urban wind power,rooftop wind turbines have been widely used in cities.The wake effect of the rooftop wind turbines will change the flow behind buildings and then affect the pollutant dispersion.To this end,the pollutant dispersion behind the building is studied via the computational fluid dynamics method.The actuator disk model and idealized cube are adopted to model the wind turbine and the building,respectively.The study shows that the rooftop wind turbine can reduce the pollutant mass fraction near the ground and the pedestrian level.Due to the wake effect of the rooftop wind turbine,the turbulent fluctuation behind the building is weakened,and the spanwise pollutant dispersion is suppressed.Besides,the rooftop wind turbine weakens the downwash movement of the building,which enhances the vertical pollutant dispersion.
基金supported by the National Natural Science Foundation of China(Nos.11988102,12172360)Institute of Mechanics and Chinese Academy of Sciences。
文摘With the increased penetration of wind energy in our nation’s energy portfolio, wind farms are placed in a way close to each other. Thus, their wakes have to be fully considered in the design and operation of a wind farm. In this study, we investigate the wake of a wind farm using large-eddy simulation with wind turbine rotor modelled by the actuator disk model. The simulated results show that the wake of a wind farm can persist for a long distance in its downstream. For the considered wind farm layout, the velocity in the wake recovers 95% of that of the undisturbed inflow at 55 rotor diameters downstream from its last row, suggesting that the wake of a wind farm should be fully considered in the optimal design and operation for its downstream wind farms.
文摘In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in the atmospheric boundary layer (ABL) because the ABL is mainly governed by turbulent motions. We also demonstrate that the stream tube model customarily applied to derive the Rankine-Froude theorem must be corrected in the sense of Glauert to provide an appropriate value for the axial velocity at the rotor area. Including this correction leads to the Betz-Joukowsky limit, the maximum efficiency of 59.3 percent. Thus, Gorban’ et al.’s 30% value may be valid in water, but it has to be discarded for the atmosphere. We also show that Joukowsky’s constant circulation model leads to values of the maximum efficiency which are higher than the Betz-Jow-kowsky limit if the tip speed ratio is very low. Some of these values, however, have to be rejected for physical reasons. Based on Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sørensen we also illustrate that the maximum efficiency of propeller-type wind turbines depends on tip-speed ratio and the number of blades.
文摘In the present paper, a nonlinear multi 'actuator disk' model is proposed to analyze the dynamicbehavior of flow instabilities, including rotating stall and surge, in high speed multistage axial compressors. The model describes the duct flow fields using two dimensional, compressible and unsteadyEuler equations, and accounts for the influences of downstream plenum and throttle in the system aswell. It replaces each blade row of multistage compressors with a disk. For numerical calculations,the time marching procedure, using MacCormack two steps scheme, is used. The main purpose of thispaper is to predict the mechanism of two dimensional short wavelength rotating stall inception and theinteraction between blade rows in high speed multistage compressors. It has been demonstrated thatthe model has the ability to predict those phenomena, and the results show that some system parameters have a strong effect on the stall features as well. Results for a five stage high speed compressorare analyzed in detail, and comparison with the experimental data demonstrates that the model andcalculating results are reliable.
文摘This paper presents a comparison among different hydrodynamic models for the analysis of the unsteady loads delivered by a marine propeller working in an axial, non-uniform inflow. Specifically, for a propeller subjected to a wake-field dominated by local high-frequency changes in space, the unsteady hydroloads predicted by the Nakatake formulation are compared with those given by the Theodorsen and Sears theories, respectively. Drawbacks and potentialities of these approaches are highlighted to assess a computationally efficient hydrodynamic solver for the analysis of operating conditions where propeller blades are significantly perturbed by a multi-harmonic onset-flow. Guidelines coming from this investigation may drive the choice of a fast and reliable unsteady propeller modeling that represents a good trade-off between accuracy of simulation and cost of computation within implementation in Computational Fluid Dynamics (CFD) solvers. The hydrodynamic formulations herein proposed are validated through numerical comparisons with the (accurate but computationally expensive) propeller loads predicted by a fully 3-D panel-method Boundary Element Method (BEM) solver, suited for the analysis of propellers operating in a complex hydrodynamic environment.