In this paper, the effect of van der Waals (vdW) force on the pull-in behavior of electrostatically actuated nano/micromirrors is investigated. First, the minimum po- tential energy principle is utilized to find the...In this paper, the effect of van der Waals (vdW) force on the pull-in behavior of electrostatically actuated nano/micromirrors is investigated. First, the minimum po- tential energy principle is utilized to find the equation gov- erning the static behavior of nano/micromirror under electro- static and vdW forces. Then, the stability of static equilib- rium points is analyzed using the energy method. It is found that when there exist two equilibrium points, the smaller one is stable and the larger one is unstable. The effects of dif- ferent design parameters on the mirror's pull-in angle and pull-in voltage are studied and it is found that vdW force can considerably reduce the stability limit of the mirror. At the end, the nonlinear equilibrium equation is solved numer- ically and analytically using homotopy perturbation method (HPM). It is observed that a sixth order perturbation approx- imation can precisely model the mirror's behavior. The re- suits of this paper can be used for stable operation design and safe fabrication of torsional nano/micro actuators.展开更多
This paper presents a precision centimeter-range positioner based on a Lorentz force actuator using flexure guides.An additional digital-to-analog converter and an operational amplifier(op amp)circuit together with a ...This paper presents a precision centimeter-range positioner based on a Lorentz force actuator using flexure guides.An additional digital-to-analog converter and an operational amplifier(op amp)circuit together with a suitable controller are used to enhance the positioning accuracy to the nanometer level.First,a suitable coil is designed for the actuator based on the stiffness of the flexure guide model.The flexure mechanism and actuator performance are then verified with finite element analysis.Based on these,a means to enhance the positioning performance electronically is presented together with the control scheme.Finally,a prototype is fabricated,and the performance is evaluated.This positioner features a range of 10 mm with a resolution of 10 nm.The proposed scheme can be extended to other systems.展开更多
A ZW-126/D2000-40 type single-break vacuum circuit breaker(VCB)with controlled switching technology is designed and produced in this paper.The results of type tests based on IEC and GB standards are presented.A 126 kV...A ZW-126/D2000-40 type single-break vacuum circuit breaker(VCB)with controlled switching technology is designed and produced in this paper.The results of type tests based on IEC and GB standards are presented.A 126 kV singlebreak vacuum interrupter(VI)with 3/4 coil axial magnetic field(AMF)contacts is used in the VCB,which can interrupt short currents of 40 kA.The external insulation of the VI is provided by SF_(6) at 0.1 MPa.In order to match the 126 kV single-break VI and controlled switching device,a long-stroke electro-magnetic force actuator(EMFA)with 16 kN closing holding force and 3.5 m/s average opening speed is designed.Moreover,a position tracking controlled switching device based on closed-loop control using the technology of a fuzzy control algorithm and pulse width modulation is applied to the controlled switching device.This device is applied to control the coil current of EMFA and the electromagnetic force,so as to control the EMFA to follow the ideal position curve.The type tests of 126 kV VCB are all passed according to the IEC62271-100 and GB1984-2014,including dielectric tests,basic short-circuit tests,shortline fault tests,out-of-phase tests,etc.The strong capacitive current breaking capacity and mechanical strength of the VCB are proved by the capacitive current switching test of class C2,electrical endurance test of class E2 and mechanical endurance test of class M2.The electromagnetic compatibility(EMC)tests are passed according to the IEC61000-4.The controlled switching test of capacitive current was successful according to IEC62271-302 and GB/T30846-2014,and the controlled switching accuracy is less than±0.5 ms.The test results show that the VCB has excellent performance,which has broad application prospects in special occasions at a 126 kV voltage level,such as a switching capacitor and no-load transformer,etc.展开更多
文摘In this paper, the effect of van der Waals (vdW) force on the pull-in behavior of electrostatically actuated nano/micromirrors is investigated. First, the minimum po- tential energy principle is utilized to find the equation gov- erning the static behavior of nano/micromirror under electro- static and vdW forces. Then, the stability of static equilib- rium points is analyzed using the energy method. It is found that when there exist two equilibrium points, the smaller one is stable and the larger one is unstable. The effects of dif- ferent design parameters on the mirror's pull-in angle and pull-in voltage are studied and it is found that vdW force can considerably reduce the stability limit of the mirror. At the end, the nonlinear equilibrium equation is solved numer- ically and analytically using homotopy perturbation method (HPM). It is observed that a sixth order perturbation approx- imation can precisely model the mirror's behavior. The re- suits of this paper can be used for stable operation design and safe fabrication of torsional nano/micro actuators.
基金Project supported by the National Key Research and Development Plan of China(No.2017YFB1303101)。
文摘This paper presents a precision centimeter-range positioner based on a Lorentz force actuator using flexure guides.An additional digital-to-analog converter and an operational amplifier(op amp)circuit together with a suitable controller are used to enhance the positioning accuracy to the nanometer level.First,a suitable coil is designed for the actuator based on the stiffness of the flexure guide model.The flexure mechanism and actuator performance are then verified with finite element analysis.Based on these,a means to enhance the positioning performance electronically is presented together with the control scheme.Finally,a prototype is fabricated,and the performance is evaluated.This positioner features a range of 10 mm with a resolution of 10 nm.The proposed scheme can be extended to other systems.
基金This work is supported by the National Natural Science Foundation of China(No.51877026 and No.51337001)the Science&Technology Project of SGCC(No.5229CG15003Q).
文摘A ZW-126/D2000-40 type single-break vacuum circuit breaker(VCB)with controlled switching technology is designed and produced in this paper.The results of type tests based on IEC and GB standards are presented.A 126 kV singlebreak vacuum interrupter(VI)with 3/4 coil axial magnetic field(AMF)contacts is used in the VCB,which can interrupt short currents of 40 kA.The external insulation of the VI is provided by SF_(6) at 0.1 MPa.In order to match the 126 kV single-break VI and controlled switching device,a long-stroke electro-magnetic force actuator(EMFA)with 16 kN closing holding force and 3.5 m/s average opening speed is designed.Moreover,a position tracking controlled switching device based on closed-loop control using the technology of a fuzzy control algorithm and pulse width modulation is applied to the controlled switching device.This device is applied to control the coil current of EMFA and the electromagnetic force,so as to control the EMFA to follow the ideal position curve.The type tests of 126 kV VCB are all passed according to the IEC62271-100 and GB1984-2014,including dielectric tests,basic short-circuit tests,shortline fault tests,out-of-phase tests,etc.The strong capacitive current breaking capacity and mechanical strength of the VCB are proved by the capacitive current switching test of class C2,electrical endurance test of class E2 and mechanical endurance test of class M2.The electromagnetic compatibility(EMC)tests are passed according to the IEC61000-4.The controlled switching test of capacitive current was successful according to IEC62271-302 and GB/T30846-2014,and the controlled switching accuracy is less than±0.5 ms.The test results show that the VCB has excellent performance,which has broad application prospects in special occasions at a 126 kV voltage level,such as a switching capacitor and no-load transformer,etc.