期刊文献+
共找到188篇文章
< 1 2 10 >
每页显示 20 50 100
Development of a Three-Dimensional Multiscale Octree SBFEM for Viscoelastic Problems of Heterogeneous Materials
1
作者 Xu Xu Xiaoteng Wang +2 位作者 Haitian Yang Zhenjun Yang Yiqian He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1831-1861,共31页
The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms(DOFs).A basic framework of the Multiscale Scaled Boundary Fini... The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms(DOFs).A basic framework of the Multiscale Scaled Boundary Finite Element Method(MsSBFEM)was presented in our previous works,but those works only addressed two-dimensional problems.In order to solve more realistic problems,a three-dimensional MsSBFEM is further developed in this article.In the proposed method,the octree SBFEM is used to deal with the three-dimensional calculation for numerical base functions to bridge small and large scales,the three-dimensional image-based analysis can be conveniently conducted in small-scale and coarse nodes can be flexibly adjusted to improve the computational accuracy.Besides,the Temporally Piecewise Adaptive Algorithm(TPAA)is used to maintain the computational accuracy of multiscale analysis by adaptive calculation in time domain.The results of numerical examples show that the proposed method can significantly reduce the DOFs for three-dimensional viscoelastic analysis with good accuracy.For instance,the DOFs can be reduced by 9021 times compared with Direct Numerical Simulation(DNS)with an average error of 1.87%in the third example,and it is very effective in dealing with three-dimensional complex microstructures directly based on images without any geometric modelling process. 展开更多
关键词 Three-dimensionalmultiscale viscoelastic analysis numerical base functions octree SBFEM image-based analysis temporally piecewise adaptive algorithm
下载PDF
GCAGA: A Gini Coefficient-Based Optimization Strategy for Computation Offloading in Multi-User-Multi-Edge MEC System
2
作者 Junqing Bai Qiuchao Dai Yingying Li 《Computers, Materials & Continua》 SCIE EI 2024年第6期5083-5103,共21页
To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network... To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network’s edge.However,resource-constrained mobile devices still suffer from a capacity mismatch when faced with latency-sensitive and compute-intensive emerging applications.To address the difficulty of running computationally intensive applications on resource-constrained clients,a model of the computation offloading problem in a network consisting of multiple mobile users and edge cloud servers is studied in this paper.Then a user benefit function EoU(Experience of Users)is proposed jointly considering energy consumption and time delay.The EoU maximization problem is decomposed into two steps,i.e.,resource allocation and offloading decision.The offloading decision is usually given by heuristic algorithms which are often faced with the challenge of slow convergence and poor stability.Thus,a combined offloading algorithm,i.e.,a Gini coefficient-based adaptive genetic algorithm(GCAGA),is proposed to alleviate the dilemma.The proposed algorithm optimizes the offloading decision by maximizing EoU and accelerates the convergence with the Gini coefficient.The simulation compares the proposed algorithm with the genetic algorithm(GA)and adaptive genetic algorithm(AGA).Experiment results show that the Gini coefficient and the adaptive heuristic operators can accelerate the convergence speed,and the proposed algorithm performs better in terms of convergence while obtaining higher EoU.The simulation code of the proposed algorithm is available:https://github.com/Grox888/Mobile_Edge_Computing/tree/GCAGA. 展开更多
关键词 Mobile edge computing multi-user-multi-edge joint optimization Gini coefficient adaptive genetic algorithm
下载PDF
Identification of time-varying system and energy-based optimization of adaptive control in seismically excited structure
3
作者 Elham Aghabarari Fereidoun Amini Pedram Ghaderi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期227-240,共14页
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ... The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems. 展开更多
关键词 integrated online identification time-varying systems structural energy multiple forgetting factor recursive least squares optimal simple adaptive control algorithm
下载PDF
The Algorithms of Adaptive Active Noise Control Systems in a Duct
4
作者 韩秀苓 程凡 +1 位作者 高建林 李传光 《Journal of Beijing Institute of Technology》 EI CAS 1995年第1期85+80-85,共7页
On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in t... On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in the adaptive filter in the AANC system, derives the recursive formulas of LMS algorithm. and obtains the LMS algorithm in computer simulation using FIR and IIR filters in AANC system. By means of simulation, we compare the attenuation levels with various input signals in AANC system and discuss the effects of step factor, order of filters and sound delay on the algorithm's convergence rate and attenuation level.We also discuss the attenuation levels with sound feedback using are and IIR filters in AANC system. 展开更多
关键词 adaptive control system adaptive filters noise control /adaptive algorithm LMS algorithm
下载PDF
Inversion of Seabed Geotechnical Properties in the Arctic Chukchi Deep Sea Basin Based on Time Domain Adaptive Search Matching Algorithm
5
作者 AN Long XU Chong +5 位作者 XING Junhui GONG Wei JIANG Xiaodian XU Haowei LIU Chuang YANG Boxue 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期933-942,共10页
The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained... The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement. 展开更多
关键词 time domain adaptive search matching algorithm acoustic impedance inversion sedimentary grain size Arctic Ocean Chukchi Deep Sea Basin
下载PDF
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
6
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE CSCD 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 Adaptive Grasshopper Optimization Algorithm(AGOA) Cluster Head(CH) network lifetime Teaching-Learning-based Optimization Algorithm(TLOA) Wireless Sensor Networks(WSNs)
下载PDF
FREQUENCY-DOMAIN IMPLEMENTATION OF FILTERED-X ALGORITHMS WITH ON-LINE SYSTEM IDENTIFICATION FOR VIBRATION CONTROL
7
作者 陈卫东 顾仲权 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期99-103,共5页
This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain ... This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum. 展开更多
关键词 vibration reduction feedforward control adaptive filters vibration control adaptive algorithms
下载PDF
A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification
8
作者 Tsu-Yang Wu Haonan Li +1 位作者 Saru Kumari Chien-Ming Chen 《Computers, Materials & Continua》 SCIE EI 2024年第4期19-46,共28页
Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convol... Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification. 展开更多
关键词 Adaptive Fick’s law algorithm spectral convolutional neural network metaheuristic algorithm intelligent optimization algorithm hyperspectral image classification
下载PDF
Multi-Label Chinese Comments Categorization: Comparison of Multi-Label Learning Algorithms 被引量:4
9
作者 Jiahui He Chaozhi Wang +2 位作者 Hongyu Wu Leiming Yan Christian Lu 《Journal of New Media》 2019年第2期51-61,共11页
Multi-label text categorization refers to the problem of categorizing text througha multi-label learning algorithm. Text classification for Asian languages such as Chinese isdifferent from work for other languages suc... Multi-label text categorization refers to the problem of categorizing text througha multi-label learning algorithm. Text classification for Asian languages such as Chinese isdifferent from work for other languages such as English which use spaces to separate words.Before classifying text, it is necessary to perform a word segmentation operation to converta continuous language into a list of separate words and then convert it into a vector of acertain dimension. Generally, multi-label learning algorithms can be divided into twocategories, problem transformation methods and adapted algorithms. This work will usecustomer's comments about some hotels as a training data set, which contains labels for allaspects of the hotel evaluation, aiming to analyze and compare the performance of variousmulti-label learning algorithms on Chinese text classification. The experiment involves threebasic methods of problem transformation methods: Support Vector Machine, Random Forest,k-Nearest-Neighbor;and one adapted algorithm of Convolutional Neural Network. Theexperimental results show that the Support Vector Machine has better performance. 展开更多
关键词 Multi-label classification Chinese text classification problem transformation adapted algorithms
下载PDF
Adaptive block greedy algorithms for receiving multi-narrowband signal in compressive sensing radar reconnaissance receiver
10
作者 ZHANG Chaozhu XU Hongyi JIANG Haiqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1158-1169,共12页
This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, ... This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, the binary tree search,and the residual monitoring mechanism, two adaptive block greedy algorithms are proposed to achieve a high probability adaptive reconstruction. The use of the block sparsity can greatly improve the efficiency of the support selection and reduce the lower boundary of the sub-sampling rate. Furthermore, the addition of binary tree search and monitoring mechanism with two different supports self-adaption methods overcome the instability caused by the fixed block length while optimizing the recovery of the unknown signal.The simulations and analysis of the adaptive reconstruction ability and theoretical computational complexity are given. Also, we verify the feasibility and effectiveness of the two algorithms by the experiments of receiving multi-narrowband signals on an analogto-information converter(AIC). Finally, an optimum reconstruction characteristic of two algorithms is found to facilitate efficient reception in practical applications. 展开更多
关键词 compressive sensing(CS) adaptive greedy algorithm block sparsity analog-to-information convertor(AIC) multinarrowband signal
下载PDF
Method for improving RLS algorithms
11
作者 LI Tian-shu TIAN Kai LI Wen-xiu 《Journal of Marine Science and Application》 2007年第3期68-70,共3页
The recursive least-square (RLS) algorithm has been extensively used in adaptive identification, prediction, filtering, and many other fields. This paper proposes adding a second-difference term to the standard recurr... The recursive least-square (RLS) algorithm has been extensively used in adaptive identification, prediction, filtering, and many other fields. This paper proposes adding a second-difference term to the standard recurrent formula to create a novel method for improving tracing capabilities. Test results show that this can greatly improve the convergence capability of RLS algorithms. 展开更多
关键词 adaptive model algorithms RLS tracing capabilities
下载PDF
An adaptive algorithm for pass adaptation in plate rolling
12
作者 Zhichun Mu, WeimingLi, and Ke LiuInformation Engineering School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2002年第5期396-399,共4页
A new algorithm for pass adaptation in plate rolling is developedto improve thickness accuracy of plate products. The feature of thealgorithm is that it uses the measured data rather than the schedulecalculated data i... A new algorithm for pass adaptation in plate rolling is developedto improve thickness accuracy of plate products. The feature of thealgorithm is that it uses the measured data rather than the schedulecalculated data in adaptation, which leads to notable improvem- entin prediction accuracy of the rolling parameters and thicknessaccuracy of products can be improved according. Results show thatthis adaptive algorithm is effective in practice. 展开更多
关键词 adaptive algorithm plate rolling measured data
下载PDF
Adaptive Fault Estimation for Dynamics of High Speed Train Based on Robust UKF Algorithm 被引量:1
13
作者 Kexin Li Tiantian Liang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第1期61-72,共12页
This paper proposes an adaptive unscented Kalman filter algorithm(ARUKF)to implement fault estimation for the dynamics of high⁃speed train(HST)with measurement uncertainty and time⁃varying noise with unknown statistic... This paper proposes an adaptive unscented Kalman filter algorithm(ARUKF)to implement fault estimation for the dynamics of high⁃speed train(HST)with measurement uncertainty and time⁃varying noise with unknown statistics.Firstly,regarding the actuator and sensor fault as the auxiliary variables of the dynamics of HST,an augmented system is established,and the fault estimation problem for dynamics of HST is formulated as the state estimation of the augmented system.Then,considering the measurement uncertainties,a robust lower bound is proposed to modify the update of the UKF to decrease the influence of measurement uncertainty on the filtering accuracy.Further,considering the unknown time⁃varying noise of the dynamics of HST,an adaptive UKF algorithm based on moving window is proposed to estimate the time⁃varying noise so that accurate concurrent actuator and sensor fault estimations of dynamics of HST is implemented.Finally,a five-car model of HST is given to show the effectiveness of this method. 展开更多
关键词 high speed train Kalman filter adaptive algorithm robust algorithm unknown noise measurement uncertainty
下载PDF
Novel Optimized Feature Selection Using Metaheuristics Applied to Physical Benchmark Datasets 被引量:1
14
作者 Doaa Sami Khafaga El-Sayed M.El-kenawy +3 位作者 Fadwa Alrowais Sunil Kumar Abdelhameed Ibrahim Abdelaziz A.Abdelhamid 《Computers, Materials & Continua》 SCIE EI 2023年第2期4027-4041,共15页
In data mining and machine learning,feature selection is a critical part of the process of selecting the optimal subset of features based on the target data.There are 2n potential feature subsets for every n features ... In data mining and machine learning,feature selection is a critical part of the process of selecting the optimal subset of features based on the target data.There are 2n potential feature subsets for every n features in a dataset,making it difficult to pick the best set of features using standard approaches.Consequently,in this research,a new metaheuristics-based feature selection technique based on an adaptive squirrel search optimization algorithm(ASSOA)has been proposed.When using metaheuristics to pick features,it is common for the selection of features to vary across runs,which can lead to instability.Because of this,we used the adaptive squirrel search to balance exploration and exploitation duties more evenly in the optimization process.For the selection of the best subset of features,we recommend using the binary ASSOA search strategy we developed before.According to the suggested approach,the number of features picked is reduced while maximizing classification accuracy.A ten-feature dataset from the University of California,Irvine(UCI)repository was used to test the proposed method’s performance vs.eleven other state-of-the-art approaches,including binary grey wolf optimization(bGWO),binary hybrid grey wolf and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hybrid GWO and genetic algorithm 4028 CMC,2023,vol.74,no.2(bGWO-GA),binary firefly algorithm(bFA),and bGAmethods.Experimental results confirm the superiority and effectiveness of the proposed algorithm for solving the problem of feature selection. 展开更多
关键词 Metaheuristics adaptive squirrel search algorithm optimization methods binary optimizer
下载PDF
Blockchain technology‑based FinTech banking sector involvement using adaptive neuro‑fuzzy‑based K‑nearest neighbors algorithm 被引量:1
15
作者 Husam Rjoub Tomiwa Sunday Adebayo Dervis Kirikkaleli 《Financial Innovation》 2023年第1期1765-1787,共23页
The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is l... The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is lacking in the traditional financial sector.The use of technology to automate financial services is becoming more important for economic organizations and industries because the digital age has seen a period of transition in terms of consumers and personalization.The future of FinTech will be shaped by technologies like the Internet of Things,blockchain,and artificial intelligence.The involvement of these platforms in financial services is a major concern for global business growth.FinTech is becoming more popular with customers because of such benefits.FinTech has driven a fundamental change within the financial services industry,placing the client at the center of everything.Protection has become a primary focus since data are a component of FinTech transactions.The task of consolidating research reports for consensus is very manual,as there is no standardized format.Although existing research has proposed certain methods,they have certain drawbacks in FinTech payment systems(including cryptocurrencies),credit markets(including peer-to-peer lending),and insurance systems.This paper implements blockchainbased financial technology for the banking sector to overcome these transition issues.In this study,we have proposed an adaptive neuro-fuzzy-based K-nearest neighbors’algorithm.The chaotic improved foraging optimization algorithm is used to optimize the proposed method.The rolling window autoregressive lag modeling approach analyzes FinTech growth.The proposed algorithm is compared with existing approaches to demonstrate its efficiency.The findings showed that it achieved 91%accuracy,90%privacy,96%robustness,and 25%cyber-risk performance.Compared with traditional approaches,the recommended strategy will be more convenient,safe,and effective in the transition period. 展开更多
关键词 FinTech Economic growth Blockchain technology Adaptive neural fuzzy based KNN algorithm Rolling window autoregressive lag modelling
下载PDF
Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
16
作者 陆静远 崔春凤 +4 位作者 欧阳滔 李金 何朝宇 唐超 钟建新 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期109-117,共9页
The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive... The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive genetic algorithm. Our calculations show that the adaptive genetic algorithm is efficient and accurate in the process of identifying structures with excellent thermoelectric performance. In multiple rounds, an average of 476 candidates(only 2.88% of all16512 candidate structures) are calculated to obtain the structures with extremely high thermoelectric conversion efficiency.The room temperature thermoelectric figure of merit(ZT) of the optimal γ-GYNR incorporating DSSs is 1.622, which is about 5.4 times higher than that of pristine γ-GYNR(length 23.693 nm and width 2.660 nm). The significant improvement of thermoelectric performance of the optimal γ-GYNR is mainly attributed to the maximum balance of inhibition of thermal conductance(proactive effect) and reduction of thermal power factor(side effect). Moreover, through exploration of the main variables affecting the genetic algorithm, it is revealed that the efficiency of the genetic algorithm can be improved by optimizing the initial population gene pool, selecting a higher individual retention rate and a lower mutation rate. The results presented in this paper validate the effectiveness of genetic algorithm in accelerating the exploration of γ-GYNRs with high thermoelectric conversion efficiency, and could provide a new development solution for carbon-based thermoelectric materials. 展开更多
关键词 adaptive genetic algorithm thermoelectric material diamond-like quantum dots gamma-graphyne nanoribbon
下载PDF
Topology Optimization of Stiffener Layout Design for Box Type Load-Bearing Component under Thermo-Mechanical Coupling
17
作者 Zhaohui Yang Tianhua Xiong +1 位作者 Fei Du Baotong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1701-1718,共18页
The structure optimization design under thermo-mechanical coupling is a difficult problem in the topology optimization field.An adaptive growth algorithm has become a more effective approach for structural topology op... The structure optimization design under thermo-mechanical coupling is a difficult problem in the topology optimization field.An adaptive growth algorithm has become a more effective approach for structural topology optimization.This paper proposed a topology optimization method by an adaptive growth algorithm for the stiffener layout design of box type load-bearing components under thermo-mechanical coupling.Based on the stiffness diffusion theory,both the load stiffness matrix and the heat conduction stiffness matrix of the stiffener are spread at the same time to make sure the stiffener grows freely and obtain an optimal stiffener layout design.Meanwhile,the objectives of optimization are the minimization of strain energy and thermal compliance of the whole structure,and thermo-mechanical coupling is considered.Numerical studies for square shells clearly show the effectiveness of the proposed method for stiffener layout optimization under thermo-mechanical coupling.Finally,the method is applied to optimize the stiffener layout of box type load-bearing component of themachining center.The optimization results show that both the structural deformation and temperature of the load-bearing component with the growth stiffener layout,which are optimized by the adaptive growth algorithm,are less than the stiffener layout of shape‘#’stiffener layout.It provides a new solution approach for stiffener layout optimization design of box type load-bearing components under thermo-mechanical coupling. 展开更多
关键词 THERMO-MECHANICAL topology optimization adaptive growth algorithm load stiffness matrix heat conduction stiffness matrix
下载PDF
Efficient Clustering Using Memetic Adaptive Hill Climbing Algorithm in WSN
18
作者 M.Manikandan S.Sakthivel V.Vivekanandhan 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3169-3185,共17页
Wireless Sensor Networks are composed of autonomous sensing devices which are interconnected to form a closed network.This closed network is intended to share sensitive location-centric information from a source node ... Wireless Sensor Networks are composed of autonomous sensing devices which are interconnected to form a closed network.This closed network is intended to share sensitive location-centric information from a source node to the base station through efficient routing mechanisms.The efficiency of the sensor node is energy bounded,acts as a concentrated area for most researchers to offer a solution for the early draining power of sensors.Network management plays a significant role in wireless sensor networks,which was obsessed with the factors like the reliability of the network,resource management,energy-efficient routing,and scalability of services.The topology of the wireless sensor networks acts dri-ven factor for network efficiency which can be effectively maintained by perform-ing the clustering process effectively.More solutions and clustering algorithms have been offered by various researchers,but the concern of reduced efficiency in the routing process and network management still exists.This research paper offers a hybrid algorithm composed of a memetic algorithm which is an enhanced version of a genetic algorithm integrated with the adaptive hill-climbing algorithm for performing energy-efficient clustering process in the wireless sensor networks.The memetic algorithm employs a local searching methodology to mitigate the premature convergence,while the adaptive hill-climbing algorithm is a local search algorithm that persistently migrates towards the increased elevation to determine the peak of the mountain(i.e.,)best cluster head in the wireless sensor networks.The proposed hybrid algorithm is compared with the state of art clus-tering algorithm to prove that the proposed algorithm outperforms in terms of a network life-time,energy consumption,throughput,etc. 展开更多
关键词 Wireless sensor networks TOPOLOGY CLUSTERING memetic algorithm adaptive hill climbing algorithm network management energy consumption THROUGHPUT
下载PDF
Adaptive Butterfly Optimization Algorithm(ABOA)Based Feature Selection and Deep Neural Network(DNN)for Detection of Distributed Denial-of-Service(DDoS)Attacks in Cloud
19
作者 S.Sureshkumar G.K.D.Prasanna Venkatesan R.Santhosh 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1109-1123,共15页
Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualiz... Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches. 展开更多
关键词 Cloud computing distributed denial of service intrusion detection system adaptive butterfly optimization algorithm deep neural network
下载PDF
Adaptive Kernel Firefly Algorithm Based Feature Selection and Q-Learner Machine Learning Models in Cloud
20
作者 I.Mettildha Mary K.Karuppasamy 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2667-2685,共19页
CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferrin... CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferring information.A dynamic strategy,DevMLOps(Development Machine Learning Operations)used in automatic selections and tunings of MLTs result in significant performance differences.But,the scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.RFEs(Recursive Feature Eliminations)are computationally very expensive in its operations as it traverses through each feature without considering correlations between them.This problem can be overcome by the use of Wrappers as they select better features by accounting for test and train datasets.The aim of this paper is to use DevQLMLOps for automated tuning and selections based on orchestrations and messaging between containers.The proposed AKFA(Adaptive Kernel Firefly Algorithm)is for selecting features for CNM(Cloud Network Monitoring)operations.AKFA methodology is demonstrated using CNSD(Cloud Network Security Dataset)with satisfactory results in the performance metrics like precision,recall,F-measure and accuracy used. 展开更多
关键词 Cloud analytics machine learning ensemble learning distributed learning clustering classification auto selection auto tuning decision feedback cloud DevOps feature selection wrapper feature selection Adaptive Kernel Firefly Algorithm(AKFA) Q learning
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部