The development characteristics of Semiothisa cinerearia Bremer & Grey was summarized, and we also put forward the control measures of well completing insect surveys to provide scientific basis for the control and ac...The development characteristics of Semiothisa cinerearia Bremer & Grey was summarized, and we also put forward the control measures of well completing insect surveys to provide scientific basis for the control and actively carrying out comprehensive management to control the pests damage in the economic permissible level.展开更多
The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf O...The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf Optimization(GWO)algorithm is proposed and successfully applied to tune all effective parameters of Fast Terminal Sliding Mode(FTSM)controllers for a quadrotor UAV.A full control scheme is first established to deal with the coupled and underactuated dynamics of the drone.Controllers for altitude,attitude,and position dynamics become separately designed and tuned.To work around the repetitive and time-consuming trial-error-based procedures,all FTSM controllers’parameters for only altitude and attitude dynamics are systematically tuned thanks to the proposed GWO metaheuristic.Such a hard and complex tuning task is formulated as a nonlinear optimization problem under operational constraints.The performance and robustness of the GWO-based control strategy are compared to those based on homologous metaheuristics and standard terminal sliding mode approaches.Numerical simulations are carried out to show the effectiveness and superiority of the proposed GWO-tuned FTSM controllers for the altitude and attitude dynamics’stabilization and tracking.Nonparametric statistical analyses revealed that the GWO algorithm is more competitive with high performance in terms of fastness,non-premature convergence,and research exploration/exploitation capabilities.展开更多
To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt ...To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme.展开更多
The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limita...The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limitations in controlling distillation systems with large time delays since ADRC employs ESO and feedback control law to estimate the total disturbance of the system without considering the large time delays.This paper designs a proportion integral-type active disturbance rejection generalized predictive control(PI-ADRGPC)algorithm to control the distillation column system with large time delay.It replaces the PD controller in ADRC with a proportion integral-type generalized predictive control(PI-GPC),thereby improving the performance of control systems with large time delays.Since the proposed controller has many parameters and is difficult to tune,this paper proposes to use the grey wolf optimization(GWO)to tune these parameters,whose structure can also be used by other intelligent optimization algorithms.The performance of GWO tuned PI-ADRGPC is compared with the control performance of GWO tuned ADRC method,multi-verse optimizer(MVO)tuned PI-ADRGPC and MVO tuned ADRC.The simulation results show that the proposed strategy can track reference well and has a good disturbance rejection performance.展开更多
Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller ...Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller with PID parameters self-tuning. According to the characteristics of target tracking system in a robot weapon, grey prediction theory and fuzzy PID control ideas are combined. A grey prediction mathematical model is constructed and a fuzzy PID controller with grey prediction was developed. Simulation result shows fuzzy PID control algorithm with grey prediction is an efficient method that can improve the control equality and robustness of traditional PID control and fuzzy PID control, and has much better performance for target tracking.展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
In the stainless steel 304 (SUS 304) wire drawing process, optimizing the die life and wire tensile strength, which are the larger-the-better quality characteristics (QCH) types, is of main interest. Three control...In the stainless steel 304 (SUS 304) wire drawing process, optimizing the die life and wire tensile strength, which are the larger-the-better quality characteristics (QCH) types, is of main interest. Three control factors, involving reduction ratio, lubricant temperature, and drawing speed, were investigated utilizing L9(34) orthogonal array (OA). The grey relational analysis was conducted for the normalized signal-to-noise (S/N) ratios. The ordinal value of the grey grade was then used to decide optimal factor levels. The anticipated improvements in die life and wire tensile strength were estimated 25.31 h and 22.50 kg/mm2, respectively. To decide the significant factor which had effect on each QCH and predict the average value of each QCH, analysis of variance (ANOVA) was performed for S/N ratio and QCH. Confirmation experiments were then conducted, where a good overlap was noticed between the predicted and confirnation intervals for each QCH. The Hotelling T2 and the sample generalized variance control charts were finally utilized in controlling and monitoring future production. In conclusion, the grey relational analysis utilizing Taguchi method is an effective approach for optimizing the die life and wire tensile strength for SUS wire drawing process. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corr...In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was proposed.The system was constituted of a pumpcontrolled part and a valve-controlled part,the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic cylinder.Based on the system characteristics,a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses,and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control precision.The experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy.展开更多
The grey fuzzy variable was defined for the two fold uncertain parameters combining grey and fuzziness factors. On the basis of the credibility and chance measure of grey fuzzy variables, the distribution center inven...The grey fuzzy variable was defined for the two fold uncertain parameters combining grey and fuzziness factors. On the basis of the credibility and chance measure of grey fuzzy variables, the distribution center inventory uncertain programming model was presented. The grey fuzzy simulation technology can generate input-output data for the uncertain functions. The neural network trained from the inputoutput data can approximate the uncertain functions. The designed hybrid intelligent algorithm by embedding the trained neural network into genetic algorithm can optimize the general grey fuzzy programming problems. Finally, one numerical example is provided to illustrate the effectiveness of the model and the hybrid intelligent algorithm.展开更多
In order to realize high accuracy control for periodic motion,a hybrid controller with grey prediction was presented in this paper.Incorporating the grey prediction,repetitive control,and the traditional Proportional-...In order to realize high accuracy control for periodic motion,a hybrid controller with grey prediction was presented in this paper.Incorporating the grey prediction,repetitive control,and the traditional Proportional-Integral-Differential(PID)control,a design method of the grey prediction repetitive PID(GRPID)control algorithm was investigated,according to the characteristics of the periodic motion control.The hybrid control algorithm can estimate unsure parameters and disturbance of system using grey prediction,and compensate control in terms of the prediction results,and this may improve control quality and robustness of repetitive control for controlling periodic motion.An example was carried out to verify the feasibility of the controller.The simulation results show that this algorithm has better performances than that of the conventional repetitive control system.It indicates the presented control method is more suitable for control system of periodic motion.展开更多
Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality cata...Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective.展开更多
This paper proposes a modified grey wolf optimiser-based adaptive super-twisting sliding mode control algorithm for the trajectory tracking and balancing of the rotary inverted pendulum system.The super-twisting slidi...This paper proposes a modified grey wolf optimiser-based adaptive super-twisting sliding mode control algorithm for the trajectory tracking and balancing of the rotary inverted pendulum system.The super-twisting sliding mode algorithm severely alleviates the chattering present in the classical sliding mode control.It provides robustness against model uncertainties and external disturbances with the knowledge of the upper bounds of the uncertainties and disturbances.The gains of the super-twisting sliding mode algorithm are selected through adaptive law.Parameters of the adaption law are tuned using a modified grey wolf optimisation algorithm,a meta-heuristic optimisation technique.Lyapunov stability analysis is carried out to analyse the overall control system stability.The performance of the proposed control algorithm is compared with two other sliding mode control strategies present in the literature,therein showing better performance of the proposed control scheme.展开更多
To ensure system stability,the fixed-PID(F-PID)controller with small parameters is usually adopted in hydropower stations.This involves a slow setting speed and it is difficult to realize optimal control for full work...To ensure system stability,the fixed-PID(F-PID)controller with small parameters is usually adopted in hydropower stations.This involves a slow setting speed and it is difficult to realize optimal control for full working conditions.To address the problem,this paper designs a variable-PID(V-PID)controller for a hydraulic turbine regulation system(HTRS)based on the improved grey wolf optimizer(INGWO)and back propagation neural networks(BPNN).These can achieve excellent regulation under full working conditions.First,the nonlinear HTRS model containing the nonlinear hydroturbine model is constructed and the stable domain is obtained using Hopf bifurcation theory to determine the available range of PID parameters.The optimal PID parameters in typical working conditions are then calculated by the INGWO,and the optimal PID parameters are generalized through training the V-PID neural networks which take the optimal PID parameters as sample data.The V-PID neural networks with different structures are compared to determine the optimal structure of the variable-PID controller model.The V-PID controller-based nonlinear HTRS model shows that the PID parameters can be automatically adjusted online according to the working condition changes,realizing optimal control of hydropower units in full working conditions.展开更多
The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and...The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and each member only shares the information with neighbors.The Chaotic Grey Wolf Optimization(CGWO)method is developed on the basis of chaotic initialization and chaotic search to solve the local Finite Horizon Optimal Control Problem(FHOCP).Then,the distributed cost function is designed and integrated into each FHOCP to achieve multi-UAV formation control and trajectory tracking with no-fly zone constraint.Further,an event-triggered strategy is proposed to reduce the computational burden for the distributed MPC approach,which considers the predicted state errors and the convergence of cost function.Simulation results show that the CGWO-based distributed MPC approach is more computationally efficient to achieve multi-UAV coordination control than traditional method.展开更多
An efficient approach was introduced for improving the condition of major controlled rolling process pa- rameters of roughing, finishing and coiling temperatures and optimizing these parameters to obtain minimum grain...An efficient approach was introduced for improving the condition of major controlled rolling process pa- rameters of roughing, finishing and coiling temperatures and optimizing these parameters to obtain minimum grain size and maximum dome height simultaneously. Taguchi method combined with grey relational analysis was applied to achieve optimum grain size and dome height during controlled rolling process. For this purpose, four levels for the above temperatures were chosen and sixteen experiments were conducted based on orthogonal array of Taguchi meth- od. Based on Taguchi approach, signal-to-noise (S/N) ratios were calculated and used in order to obtain the opti- mum levels for every input parameter. Analysis of variance revealed that finishing and coiling temperatures have the maximum effect on the grain size and dome height of microalloyed steels. The confirmation tests with the optimal levels of parameters indicated that the grain size and dome height of controlled rolled microalloyed steels can be im- proved effectively through this approach.展开更多
A Simplified Grey Wolf Optimizer(SGWO)is suggested for resolving optimization tasks.The simplification in the original Grey Wolf Optimizer(GWO)method is introduced by ignoring the worst category wolves while giving pr...A Simplified Grey Wolf Optimizer(SGWO)is suggested for resolving optimization tasks.The simplification in the original Grey Wolf Optimizer(GWO)method is introduced by ignoring the worst category wolves while giving priority to the better wolves during the search process.The advantage of the presented SGWO over GWO is a better solution taking less execution time and is demonstrated by taking unimodal,multimodal,and fixed dimension test functions.The results are also contrasted to the Gravitational Search Algorithm,the Particle Swarm Optimization,and the Sine Cosine Algorithm and this shows the superiority of the proposed SGWO technique.Practical application in a Distributed Power Generation System(DPGS)with energy storage is then considered by designing an Adaptive Fuzzy PID(AFPID)controller using the suggested SGWO method for frequency control.The DPGS contains renewable generation such as photovoltaic,wind,and storage elements such as battery and flywheel,in addition to plug-in electric vehicles.It is demonstrated that the SGWO method is superior to the GWO method in the optimal controller design task.It is also seen that SGWO based AFPID controller is highly efficacious in regulating the frequency compared to the standard PID controller.A sensitivity study is also performed to examine the impact of the unpredictability in the parameters of the investigated system on system performance.Finally,the novelty of the paper is demonstrated by comparing with the existing publications in an extensively used two-area test system.展开更多
Forecast skill (Anomaly Correlated Coefficient, ACC) is a quantity to show the forecast quality of the products of numerical weather forecasting models. Predicting forecast skill, which is the foundation of ensemble f...Forecast skill (Anomaly Correlated Coefficient, ACC) is a quantity to show the forecast quality of the products of numerical weather forecasting models. Predicting forecast skill, which is the foundation of ensemble forecasting, means submitting products to predict their forecast quality before they are used. Checking the reason is to understand the predictability for the real cases. This kind of forecasting service has been put into operational use by statistical methods previously at the National Meteorological Center (NMC), USA (now called the National Center for Environmental Prediction (NCEP)) and European Center for Medium-range Weather Forecast (ECMWF). However, this kind of service is far from satisfactory because only a single variable is used with the statistical method. In this paper, a new way based on the Grey Control Theory with multiple predictors to predict forecast skill of forecast products of the T42L9 of the NMC, China Meteorological Administration (CMA) is introduced. The results show: (1) The correlation coefficients between 'forecasted' and real forecast skill range from 0.56 to 0.7 at different seasons during the two-year period. (2) The grey forecasting model GM(1,8) forecasts successfully the high peaks, the increasing or decreasing tendency, and the turning points of the change of forecast skill of cases from 5 January 1990 to 29 February 1992.展开更多
This study proposes a control algorithm based on synchronous reference frame theory with unit templates instead of a phase locked loop for grid-connected photovoltaic(PV)solar system,comprising solar PV panels,DC-DC c...This study proposes a control algorithm based on synchronous reference frame theory with unit templates instead of a phase locked loop for grid-connected photovoltaic(PV)solar system,comprising solar PV panels,DC-DC converter,controller for maximum power point tracking,resistance capacitance ripple filter,insulated-gate bipolar transistor based controller,interfacing inductor,linear and nonlinear loads.The dynamic performance of the grid connected solar system depends on the effect operation of the control algorithm,comprising two proportional-integral controllers.These controllers estimate the reference solar-grid currents,which in turn generate pulses for the three-leg voltage source converter.The grey wolf optimization algorithm is used to optimize the controller gains of the proportional-integral controllers,resulting in excellent performance compared to that of existing optimization algorithms.The compensation for neutral current is provided by a star-delta transformer(non-isolated),and the proposed solar PV grid system provides zero voltage regulation and eliminates harmonics,in addition to load balancing.Maximum power extraction from the solar panel is achieved using the incremental conductance algorithm for the DC-DC converter supplying solar power to the DC bus capacitor,which in turn supplies this power to the grid with improved dynamics and quality.The solar system along with the control algorithm and controller is modeled using Simulink in Matlab 2019.展开更多
文摘The development characteristics of Semiothisa cinerearia Bremer & Grey was summarized, and we also put forward the control measures of well completing insect surveys to provide scientific basis for the control and actively carrying out comprehensive management to control the pests damage in the economic permissible level.
文摘The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf Optimization(GWO)algorithm is proposed and successfully applied to tune all effective parameters of Fast Terminal Sliding Mode(FTSM)controllers for a quadrotor UAV.A full control scheme is first established to deal with the coupled and underactuated dynamics of the drone.Controllers for altitude,attitude,and position dynamics become separately designed and tuned.To work around the repetitive and time-consuming trial-error-based procedures,all FTSM controllers’parameters for only altitude and attitude dynamics are systematically tuned thanks to the proposed GWO metaheuristic.Such a hard and complex tuning task is formulated as a nonlinear optimization problem under operational constraints.The performance and robustness of the GWO-based control strategy are compared to those based on homologous metaheuristics and standard terminal sliding mode approaches.Numerical simulations are carried out to show the effectiveness and superiority of the proposed GWO-tuned FTSM controllers for the altitude and attitude dynamics’stabilization and tracking.Nonparametric statistical analyses revealed that the GWO algorithm is more competitive with high performance in terms of fastness,non-premature convergence,and research exploration/exploitation capabilities.
文摘To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme.
基金funded by the National Natural Science Foundation of China(61973175,62073177 and 61973172)South African National Research Foundation(132797)+2 种基金South African National Research Foundation Incentive(114911)Eskom Tertiary Education Support Programme Grant of South AfricaTianjin Research Innovation Project for Postgraduate Students(2021YJSB018,2020YJSB003)。
文摘The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limitations in controlling distillation systems with large time delays since ADRC employs ESO and feedback control law to estimate the total disturbance of the system without considering the large time delays.This paper designs a proportion integral-type active disturbance rejection generalized predictive control(PI-ADRGPC)algorithm to control the distillation column system with large time delay.It replaces the PD controller in ADRC with a proportion integral-type generalized predictive control(PI-GPC),thereby improving the performance of control systems with large time delays.Since the proposed controller has many parameters and is difficult to tune,this paper proposes to use the grey wolf optimization(GWO)to tune these parameters,whose structure can also be used by other intelligent optimization algorithms.The performance of GWO tuned PI-ADRGPC is compared with the control performance of GWO tuned ADRC method,multi-verse optimizer(MVO)tuned PI-ADRGPC and MVO tuned ADRC.The simulation results show that the proposed strategy can track reference well and has a good disturbance rejection performance.
基金the Ministerial Level Advanced Research Foundation (061103)
文摘Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller with PID parameters self-tuning. According to the characteristics of target tracking system in a robot weapon, grey prediction theory and fuzzy PID control ideas are combined. A grey prediction mathematical model is constructed and a fuzzy PID controller with grey prediction was developed. Simulation result shows fuzzy PID control algorithm with grey prediction is an efficient method that can improve the control equality and robustness of traditional PID control and fuzzy PID control, and has much better performance for target tracking.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.
文摘In the stainless steel 304 (SUS 304) wire drawing process, optimizing the die life and wire tensile strength, which are the larger-the-better quality characteristics (QCH) types, is of main interest. Three control factors, involving reduction ratio, lubricant temperature, and drawing speed, were investigated utilizing L9(34) orthogonal array (OA). The grey relational analysis was conducted for the normalized signal-to-noise (S/N) ratios. The ordinal value of the grey grade was then used to decide optimal factor levels. The anticipated improvements in die life and wire tensile strength were estimated 25.31 h and 22.50 kg/mm2, respectively. To decide the significant factor which had effect on each QCH and predict the average value of each QCH, analysis of variance (ANOVA) was performed for S/N ratio and QCH. Confirmation experiments were then conducted, where a good overlap was noticed between the predicted and confirnation intervals for each QCH. The Hotelling T2 and the sample generalized variance control charts were finally utilized in controlling and monitoring future production. In conclusion, the grey relational analysis utilizing Taguchi method is an effective approach for optimizing the die life and wire tensile strength for SUS wire drawing process. 2008 University of Science and Technology Beijing. All rights reserved.
基金Supported by Program for New Century Excellent Talents In University(NCET-12-0049)Beijing Natural Science Foundation(4132034)
文摘In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was proposed.The system was constituted of a pumpcontrolled part and a valve-controlled part,the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic cylinder.Based on the system characteristics,a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses,and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control precision.The experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy.
基金Supported bythe Science and Research Foundationof Shanghai Municipal Educational Commssion (05DZ33)
文摘The grey fuzzy variable was defined for the two fold uncertain parameters combining grey and fuzziness factors. On the basis of the credibility and chance measure of grey fuzzy variables, the distribution center inventory uncertain programming model was presented. The grey fuzzy simulation technology can generate input-output data for the uncertain functions. The neural network trained from the inputoutput data can approximate the uncertain functions. The designed hybrid intelligent algorithm by embedding the trained neural network into genetic algorithm can optimize the general grey fuzzy programming problems. Finally, one numerical example is provided to illustrate the effectiveness of the model and the hybrid intelligent algorithm.
基金Science Fund of Shanghai Institute of Technology,China(No.YJ200609)
文摘In order to realize high accuracy control for periodic motion,a hybrid controller with grey prediction was presented in this paper.Incorporating the grey prediction,repetitive control,and the traditional Proportional-Integral-Differential(PID)control,a design method of the grey prediction repetitive PID(GRPID)control algorithm was investigated,according to the characteristics of the periodic motion control.The hybrid control algorithm can estimate unsure parameters and disturbance of system using grey prediction,and compensate control in terms of the prediction results,and this may improve control quality and robustness of repetitive control for controlling periodic motion.An example was carried out to verify the feasibility of the controller.The simulation results show that this algorithm has better performances than that of the conventional repetitive control system.It indicates the presented control method is more suitable for control system of periodic motion.
文摘Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective.
文摘This paper proposes a modified grey wolf optimiser-based adaptive super-twisting sliding mode control algorithm for the trajectory tracking and balancing of the rotary inverted pendulum system.The super-twisting sliding mode algorithm severely alleviates the chattering present in the classical sliding mode control.It provides robustness against model uncertainties and external disturbances with the knowledge of the upper bounds of the uncertainties and disturbances.The gains of the super-twisting sliding mode algorithm are selected through adaptive law.Parameters of the adaption law are tuned using a modified grey wolf optimisation algorithm,a meta-heuristic optimisation technique.Lyapunov stability analysis is carried out to analyse the overall control system stability.The performance of the proposed control algorithm is compared with two other sliding mode control strategies present in the literature,therein showing better performance of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(No.51979204 and No.52009096)the Hubei Provincial Natural Science Foundation of China(No.2022CFD165)the China Postdoctoral Science Foundation(No.2022T150498).
文摘To ensure system stability,the fixed-PID(F-PID)controller with small parameters is usually adopted in hydropower stations.This involves a slow setting speed and it is difficult to realize optimal control for full working conditions.To address the problem,this paper designs a variable-PID(V-PID)controller for a hydraulic turbine regulation system(HTRS)based on the improved grey wolf optimizer(INGWO)and back propagation neural networks(BPNN).These can achieve excellent regulation under full working conditions.First,the nonlinear HTRS model containing the nonlinear hydroturbine model is constructed and the stable domain is obtained using Hopf bifurcation theory to determine the available range of PID parameters.The optimal PID parameters in typical working conditions are then calculated by the INGWO,and the optimal PID parameters are generalized through training the V-PID neural networks which take the optimal PID parameters as sample data.The V-PID neural networks with different structures are compared to determine the optimal structure of the variable-PID controller model.The V-PID controller-based nonlinear HTRS model shows that the PID parameters can be automatically adjusted online according to the working condition changes,realizing optimal control of hydropower units in full working conditions.
基金co-supported by the National Natural Science Foundation of China(Nos.61803009,61903084)Fundamental Research Funds for the Central Universities of China(No.YWF-20-BJ-J-542)Aeronautical Science Foundation of China(No.20175851032)。
文摘The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and each member only shares the information with neighbors.The Chaotic Grey Wolf Optimization(CGWO)method is developed on the basis of chaotic initialization and chaotic search to solve the local Finite Horizon Optimal Control Problem(FHOCP).Then,the distributed cost function is designed and integrated into each FHOCP to achieve multi-UAV formation control and trajectory tracking with no-fly zone constraint.Further,an event-triggered strategy is proposed to reduce the computational burden for the distributed MPC approach,which considers the predicted state errors and the convergence of cost function.Simulation results show that the CGWO-based distributed MPC approach is more computationally efficient to achieve multi-UAV coordination control than traditional method.
文摘An efficient approach was introduced for improving the condition of major controlled rolling process pa- rameters of roughing, finishing and coiling temperatures and optimizing these parameters to obtain minimum grain size and maximum dome height simultaneously. Taguchi method combined with grey relational analysis was applied to achieve optimum grain size and dome height during controlled rolling process. For this purpose, four levels for the above temperatures were chosen and sixteen experiments were conducted based on orthogonal array of Taguchi meth- od. Based on Taguchi approach, signal-to-noise (S/N) ratios were calculated and used in order to obtain the opti- mum levels for every input parameter. Analysis of variance revealed that finishing and coiling temperatures have the maximum effect on the grain size and dome height of microalloyed steels. The confirmation tests with the optimal levels of parameters indicated that the grain size and dome height of controlled rolled microalloyed steels can be im- proved effectively through this approach.
文摘A Simplified Grey Wolf Optimizer(SGWO)is suggested for resolving optimization tasks.The simplification in the original Grey Wolf Optimizer(GWO)method is introduced by ignoring the worst category wolves while giving priority to the better wolves during the search process.The advantage of the presented SGWO over GWO is a better solution taking less execution time and is demonstrated by taking unimodal,multimodal,and fixed dimension test functions.The results are also contrasted to the Gravitational Search Algorithm,the Particle Swarm Optimization,and the Sine Cosine Algorithm and this shows the superiority of the proposed SGWO technique.Practical application in a Distributed Power Generation System(DPGS)with energy storage is then considered by designing an Adaptive Fuzzy PID(AFPID)controller using the suggested SGWO method for frequency control.The DPGS contains renewable generation such as photovoltaic,wind,and storage elements such as battery and flywheel,in addition to plug-in electric vehicles.It is demonstrated that the SGWO method is superior to the GWO method in the optimal controller design task.It is also seen that SGWO based AFPID controller is highly efficacious in regulating the frequency compared to the standard PID controller.A sensitivity study is also performed to examine the impact of the unpredictability in the parameters of the investigated system on system performance.Finally,the novelty of the paper is demonstrated by comparing with the existing publications in an extensively used two-area test system.
文摘Forecast skill (Anomaly Correlated Coefficient, ACC) is a quantity to show the forecast quality of the products of numerical weather forecasting models. Predicting forecast skill, which is the foundation of ensemble forecasting, means submitting products to predict their forecast quality before they are used. Checking the reason is to understand the predictability for the real cases. This kind of forecasting service has been put into operational use by statistical methods previously at the National Meteorological Center (NMC), USA (now called the National Center for Environmental Prediction (NCEP)) and European Center for Medium-range Weather Forecast (ECMWF). However, this kind of service is far from satisfactory because only a single variable is used with the statistical method. In this paper, a new way based on the Grey Control Theory with multiple predictors to predict forecast skill of forecast products of the T42L9 of the NMC, China Meteorological Administration (CMA) is introduced. The results show: (1) The correlation coefficients between 'forecasted' and real forecast skill range from 0.56 to 0.7 at different seasons during the two-year period. (2) The grey forecasting model GM(1,8) forecasts successfully the high peaks, the increasing or decreasing tendency, and the turning points of the change of forecast skill of cases from 5 January 1990 to 29 February 1992.
文摘This study proposes a control algorithm based on synchronous reference frame theory with unit templates instead of a phase locked loop for grid-connected photovoltaic(PV)solar system,comprising solar PV panels,DC-DC converter,controller for maximum power point tracking,resistance capacitance ripple filter,insulated-gate bipolar transistor based controller,interfacing inductor,linear and nonlinear loads.The dynamic performance of the grid connected solar system depends on the effect operation of the control algorithm,comprising two proportional-integral controllers.These controllers estimate the reference solar-grid currents,which in turn generate pulses for the three-leg voltage source converter.The grey wolf optimization algorithm is used to optimize the controller gains of the proportional-integral controllers,resulting in excellent performance compared to that of existing optimization algorithms.The compensation for neutral current is provided by a star-delta transformer(non-isolated),and the proposed solar PV grid system provides zero voltage regulation and eliminates harmonics,in addition to load balancing.Maximum power extraction from the solar panel is achieved using the incremental conductance algorithm for the DC-DC converter supplying solar power to the DC bus capacitor,which in turn supplies this power to the grid with improved dynamics and quality.The solar system along with the control algorithm and controller is modeled using Simulink in Matlab 2019.