Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreg...Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background.展开更多
Low Resolution Thermal Array Sensors are widely used in several applications in indoor environments. In particular, one of these cheap, small and unobtrusive sensors provides a low-resolution thermal image of the envi...Low Resolution Thermal Array Sensors are widely used in several applications in indoor environments. In particular, one of these cheap, small and unobtrusive sensors provides a low-resolution thermal image of the environment and, unlike cameras;it is capable to detect human heat emission even in dark rooms. The obtained thermal data can be used to monitor older seniors while they are performing daily activities at home, to detect critical situations such as falls. Most of the studies in activity recognition using Thermal Array Sensors require human detection techniques to recognize humans passing in the sensor field of view. This paper aims to improve the accuracy of the algorithms used so far by considering the temperature environment variation. This method leverages an adaptive background estimation and a noise removal technique based on Kalman Filter. In order to properly validate the system, a novel installation of a single sensor has been implemented in a smart environment: the obtained results show an improvement in human detection accuracy with respect to the state of the art, especially in case of disturbed environments.展开更多
In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions ...In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.展开更多
There exists a Ghost region in the detection result of the traditional visual background extraction(ViBe)algorithm,and the foreground extraction is prone to false detection or missed detection due to environmental cha...There exists a Ghost region in the detection result of the traditional visual background extraction(ViBe)algorithm,and the foreground extraction is prone to false detection or missed detection due to environmental changes.Therefore,an improved ViBe algorithm based on adaptive detection of moving targets was proposed.Firstly,in the background model initialization process,the real background could be obtained by setting adjusting parameters in mean background modeling,and the ViBe background model was initialized by using the background.Secondly,in the foreground detection process,an adaptive radius threshold was introduced according to the scene change to adaptively detect the foreground.Finally,mathematical morphological close operation was used to fill the holes in the detection results.The experimental results show that the improved method can effectively suppress the Ghost region and detect the foreground target more completely under the condition of environmental changes.Compared with the traditional ViBe algorithm,the detection accuracy is improved by more than 10%,the false detection rate and the missed detection rate are reduced by 20% and 7% respectively.In addition,the improved method satisfies the real-time requirements.展开更多
A novel Time-Interleaved Analog-to-Digital Converter (TIADC) digital background calibration for the mismatches of offsets, gain errors, and timing skews based on split-ADC is proposed. Firstly, the split-ADC channels ...A novel Time-Interleaved Analog-to-Digital Converter (TIADC) digital background calibration for the mismatches of offsets, gain errors, and timing skews based on split-ADC is proposed. Firstly, the split-ADC channels in present TIADC architecture are designed to convert input signal at two different channel sampling rates so that redundant channel to facilitate pair permutation is avoided. Secondly, a high-order compensation scheme for correction of timing skew error is employed for effective calibration to preserve high-resolution when input frequency is high. Numerical simulation performed by MATLAB for a 14-bit TIADC based on 7 split-ADC channels shows that Signal-to-Noise and Distortion Ratio (SNDR) and Spurious Free Dynamic Range (SFDR) of the TIADC achieve 86.2 dBc and 106 dBc respectively after calibration with normalized input frequency near Nyquist frequency.展开更多
The adaptive algorithm used for echo cancellation(EC) system needs to provide 1) low misadjustment and 2) high convergence rate. The affine projection algorithm(APA) is a better alternative than normalized least mean ...The adaptive algorithm used for echo cancellation(EC) system needs to provide 1) low misadjustment and 2) high convergence rate. The affine projection algorithm(APA) is a better alternative than normalized least mean square(NLMS) algorithm in EC applications where the input signal is highly correlated. Since the APA with a constant step-size has to make compromise between the performance criteria 1) and 2), a variable step-size APA(VSS-APA) provides a more reliable solution. A nonparametric VSS-APA(NPVSS-APA) is proposed by recovering the background noise within the error signal instead of cancelling the a posteriori errors. The most problematic term of its variable step-size formula is the value of background noise power(BNP). The power difference between the desired signal and output signal, which equals the power of error signal statistically, has been considered the BNP estimate in a rough manner. Considering that the error signal consists of background noise and misalignment noise, a precise BNP estimate is achieved by multiplying the rough estimate with a corrective factor. After the analysis on the power ratio of misalignment noise to background noise of APA, the corrective factor is formulated depending on the projection order and the latest value of variable step-size. The new algorithm which does not require any a priori knowledge of EC environment has the advantage of easier controllability in practical application. The simulation results in the EC context indicate the accuracy of the proposed BNP estimate and the more effective behavior of the proposed algorithm compared with other versions of APA class.展开更多
针对单帧复杂背景红外图像点目标检测算法存在复杂背景下处理效果不理想、处理时间长的问题,提出了一种层次卷积滤波检测算法。主要分为两个部分:第一,根据红外小目标特性,设计一种层次卷积滤波的算子,对图像进行滤波处理,实现图像中小...针对单帧复杂背景红外图像点目标检测算法存在复杂背景下处理效果不理想、处理时间长的问题,提出了一种层次卷积滤波检测算法。主要分为两个部分:第一,根据红外小目标特性,设计一种层次卷积滤波的算子,对图像进行滤波处理,实现图像中小目标的增效和背景抑制的效果;第二,采用基于最大值的自适应阈值方法,对图像进行二值化操作,过滤背景杂波,最终提取到待检测的目标。在大量不同背景红外图像中进行实验,论文算法在背景抑制因子和信噪比增益的性能量化结果上优于现有5种典型红外弱小目标检测算法的性能结果,且平均处理时间仅为高斯拉普拉斯(Laplacian of Gaussian,LoG)滤波算法的30.42%。通过实验对比,表明该层次卷积滤波算法可以有效解决在不同复杂背景下的红外图像中对小目标检测的问题。展开更多
基金Project(61701060)supported by the National Natural Science Foundation of China。
文摘Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background.
文摘Low Resolution Thermal Array Sensors are widely used in several applications in indoor environments. In particular, one of these cheap, small and unobtrusive sensors provides a low-resolution thermal image of the environment and, unlike cameras;it is capable to detect human heat emission even in dark rooms. The obtained thermal data can be used to monitor older seniors while they are performing daily activities at home, to detect critical situations such as falls. Most of the studies in activity recognition using Thermal Array Sensors require human detection techniques to recognize humans passing in the sensor field of view. This paper aims to improve the accuracy of the algorithms used so far by considering the temperature environment variation. This method leverages an adaptive background estimation and a noise removal technique based on Kalman Filter. In order to properly validate the system, a novel installation of a single sensor has been implemented in a smart environment: the obtained results show an improvement in human detection accuracy with respect to the state of the art, especially in case of disturbed environments.
基金The National Natural Science Foundation of China (No.61172135,61101198)the Aeronautical Foundation of China (No.20115152026)
文摘In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)。
文摘There exists a Ghost region in the detection result of the traditional visual background extraction(ViBe)algorithm,and the foreground extraction is prone to false detection or missed detection due to environmental changes.Therefore,an improved ViBe algorithm based on adaptive detection of moving targets was proposed.Firstly,in the background model initialization process,the real background could be obtained by setting adjusting parameters in mean background modeling,and the ViBe background model was initialized by using the background.Secondly,in the foreground detection process,an adaptive radius threshold was introduced according to the scene change to adaptively detect the foreground.Finally,mathematical morphological close operation was used to fill the holes in the detection results.The experimental results show that the improved method can effectively suppress the Ghost region and detect the foreground target more completely under the condition of environmental changes.Compared with the traditional ViBe algorithm,the detection accuracy is improved by more than 10%,the false detection rate and the missed detection rate are reduced by 20% and 7% respectively.In addition,the improved method satisfies the real-time requirements.
基金Supported by the National Natural Science Foundation of China (No. 61076026)
文摘A novel Time-Interleaved Analog-to-Digital Converter (TIADC) digital background calibration for the mismatches of offsets, gain errors, and timing skews based on split-ADC is proposed. Firstly, the split-ADC channels in present TIADC architecture are designed to convert input signal at two different channel sampling rates so that redundant channel to facilitate pair permutation is avoided. Secondly, a high-order compensation scheme for correction of timing skew error is employed for effective calibration to preserve high-resolution when input frequency is high. Numerical simulation performed by MATLAB for a 14-bit TIADC based on 7 split-ADC channels shows that Signal-to-Noise and Distortion Ratio (SNDR) and Spurious Free Dynamic Range (SFDR) of the TIADC achieve 86.2 dBc and 106 dBc respectively after calibration with normalized input frequency near Nyquist frequency.
文摘The adaptive algorithm used for echo cancellation(EC) system needs to provide 1) low misadjustment and 2) high convergence rate. The affine projection algorithm(APA) is a better alternative than normalized least mean square(NLMS) algorithm in EC applications where the input signal is highly correlated. Since the APA with a constant step-size has to make compromise between the performance criteria 1) and 2), a variable step-size APA(VSS-APA) provides a more reliable solution. A nonparametric VSS-APA(NPVSS-APA) is proposed by recovering the background noise within the error signal instead of cancelling the a posteriori errors. The most problematic term of its variable step-size formula is the value of background noise power(BNP). The power difference between the desired signal and output signal, which equals the power of error signal statistically, has been considered the BNP estimate in a rough manner. Considering that the error signal consists of background noise and misalignment noise, a precise BNP estimate is achieved by multiplying the rough estimate with a corrective factor. After the analysis on the power ratio of misalignment noise to background noise of APA, the corrective factor is formulated depending on the projection order and the latest value of variable step-size. The new algorithm which does not require any a priori knowledge of EC environment has the advantage of easier controllability in practical application. The simulation results in the EC context indicate the accuracy of the proposed BNP estimate and the more effective behavior of the proposed algorithm compared with other versions of APA class.
文摘针对单帧复杂背景红外图像点目标检测算法存在复杂背景下处理效果不理想、处理时间长的问题,提出了一种层次卷积滤波检测算法。主要分为两个部分:第一,根据红外小目标特性,设计一种层次卷积滤波的算子,对图像进行滤波处理,实现图像中小目标的增效和背景抑制的效果;第二,采用基于最大值的自适应阈值方法,对图像进行二值化操作,过滤背景杂波,最终提取到待检测的目标。在大量不同背景红外图像中进行实验,论文算法在背景抑制因子和信噪比增益的性能量化结果上优于现有5种典型红外弱小目标检测算法的性能结果,且平均处理时间仅为高斯拉普拉斯(Laplacian of Gaussian,LoG)滤波算法的30.42%。通过实验对比,表明该层次卷积滤波算法可以有效解决在不同复杂背景下的红外图像中对小目标检测的问题。