期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An Adaptive Fruit Fly Optimization Algorithm for Optimization Problems
1
作者 L. Q. Zhang J. Xiong J. K. Liu 《Journal of Applied Mathematics and Physics》 2023年第11期3641-3650,共10页
In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local ... In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance. 展开更多
关键词 Swarm Intelligent optimization algorithm fruit fly optimization algorithm adaptive Step Local optimum Convergence Speed
下载PDF
基于ACFOA优化RBF的短期风电功率预测 被引量:8
2
作者 崔闪 彭道刚 钱玉良 《可再生能源》 CAS 北大核心 2017年第1期80-85,共6页
为了提高短期风电输出功率预测的准确度,在分析研究基本预测方法的基础上,提出采用一种自适应混沌果蝇算法(ACFOA)优化RBF神经网络的预测方法。该方法中引入自适应混沌对果蝇算法的进化机制进行优化,并利用ACFOA算法改善RBF神经网络结... 为了提高短期风电输出功率预测的准确度,在分析研究基本预测方法的基础上,提出采用一种自适应混沌果蝇算法(ACFOA)优化RBF神经网络的预测方法。该方法中引入自适应混沌对果蝇算法的进化机制进行优化,并利用ACFOA算法改善RBF神经网络结构参数以提高网络的泛化能力,同时对某风电场的历史数据进行验证分析。仿真结果表明,相比于PSO-RBF预测方法,采用提出的预测模型能有效减少较大误差出现的频率,大幅度提高风电输出功率预测的准确度。 展开更多
关键词 风电功率 预测模型 RBF神经网络 acfoa算法 参数优化
下载PDF
自适应混沌果蝇优化算法 被引量:46
3
作者 韩俊英 刘成忠 《计算机应用》 CSCD 北大核心 2013年第5期1313-1316,1333,共5页
针对基本果蝇优化算法(FOA)寻优精度不高和易陷入局部最优的缺点,融入混沌算法对果蝇优化算法的进化机制进行优化,提出自适应混沌果蝇优化算法(ACFOA)。在算法处于收敛状态时,应用混沌算法进行全局寻优,从而跳出局部极值而继续优化。对... 针对基本果蝇优化算法(FOA)寻优精度不高和易陷入局部最优的缺点,融入混沌算法对果蝇优化算法的进化机制进行优化,提出自适应混沌果蝇优化算法(ACFOA)。在算法处于收敛状态时,应用混沌算法进行全局寻优,从而跳出局部极值而继续优化。对几种经典测试函数的仿真结果表明,ACFOA具有更好的全局搜索能力,在收敛速度、收敛可靠性及收敛精度上均比基本FOA有较大的提高。 展开更多
关键词 自适应 混沌 果蝇优化算法 适应度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部