The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the...The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. The effect of the parameters in STSA is theoretically evaluated and numerically verified. AICSA is employed to minimize the error between the state sequence histogram (SSH) that is transformed from raw acceleration data by STSA. The proposed methodology is evaluated by comparing it with AICSA using raw acceleration data. AICSA combining STSA is proved to be a powerful tool for identifying unknown parameters of structural systems even when the data is contaminated with relatively large amounts of noise.展开更多
A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exp...A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exploration and exploitation. In the clonal selection mechanism, clonal selection, hypermutation and receptor edit theories are presented to construct an evolutionary searching mechanism which is used for exploration. In the local search mechanism, a simulated annealing local search algorithm based on Nowicki and Smutnicki's neighborhood is presented to exploit local optima. The proposed algorithm is examined using some well-known benchmark problems. Numerical results validate the effectiveness of the proposed algorithm.展开更多
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom...A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.展开更多
The motivation of data mining is how to extract effective information from huge data in very large database. However, some redundant and irrelevant attributes, which result in low performance and high computing comple...The motivation of data mining is how to extract effective information from huge data in very large database. However, some redundant and irrelevant attributes, which result in low performance and high computing complexity, are included in the very large database in general.So, Feature Subset Selection (FSS) becomes one important issue in the field of data mining. In this letter, an FSS model based on the filter approach is built, which uses the simulated annealing genetic algorithm. Experimental results show that convergence and stability of this algorithm are adequately achieved.展开更多
Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated ...Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated multi robot manipulators. Over the task space of a multi robot, a strategy of decoupled planning is also applied to the evolutionary process, which enables a multi robot to avoid falling into deadlock and calculating of composite C space. Finally, two representative tests are given to validate A SA GA and the strategy of decoupled planning.展开更多
Aiming at the problem of long time-consuming and low accuracy of existing age estimation approaches,a new age estimation method using Gabor feature fusion,and an improved atomic search algorithm for feature selection ...Aiming at the problem of long time-consuming and low accuracy of existing age estimation approaches,a new age estimation method using Gabor feature fusion,and an improved atomic search algorithm for feature selection is proposed.Firstly,texture features of five scales and eight directions in the face region are extracted by Gabor wavelet transform.The statistical histogram is introduced to encode and fuse the directional index with the largest feature value on Gabor scales.Secondly,a new hybrid feature selection algorithm chaotic improved atom search optimisation with simulated annealing(CIASO-SA)is presented,which is based on an improved atomic search algorithm and the simulated annealing algorithm.Besides,the CIASO-SA algorithm introduces a chaos mechanism during atomic initialisation,significantly improving the convergence speed and accuracy of the algorithm.Finally,a support vector machine(SVM)is used to get classification results of the age group.To verify the performance of the proposed algorithm,face images with three resolutions in the Adience dataset are tested.Using the Gabor real part fusion feature at 48�48 resolution,the average accuracy and 1-off accuracy of age classification exhibit a maximum of 60.4%and 85.9%,respectively.Obtained results prove the superiority of the proposed algorithm over the state-of-the-art methods,which is of great referential value for application to the mobile terminals.展开更多
文摘The feasibility of a parameter identification method based on symbolic time series analysis (STSA) and the adaptive immune clonal selection algorithm (AICSA) is studied. Data symbolization by using STSA alleviates the effects of harmful noise in raw acceleration data. The effect of the parameters in STSA is theoretically evaluated and numerically verified. AICSA is employed to minimize the error between the state sequence histogram (SSH) that is transformed from raw acceleration data by STSA. The proposed methodology is evaluated by comparing it with AICSA using raw acceleration data. AICSA combining STSA is proved to be a powerful tool for identifying unknown parameters of structural systems even when the data is contaminated with relatively large amounts of noise.
文摘A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exploration and exploitation. In the clonal selection mechanism, clonal selection, hypermutation and receptor edit theories are presented to construct an evolutionary searching mechanism which is used for exploration. In the local search mechanism, a simulated annealing local search algorithm based on Nowicki and Smutnicki's neighborhood is presented to exploit local optima. The proposed algorithm is examined using some well-known benchmark problems. Numerical results validate the effectiveness of the proposed algorithm.
文摘A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.
基金Supported by the Project of the Science and Technology Plan of Chongqing City
文摘The motivation of data mining is how to extract effective information from huge data in very large database. However, some redundant and irrelevant attributes, which result in low performance and high computing complexity, are included in the very large database in general.So, Feature Subset Selection (FSS) becomes one important issue in the field of data mining. In this letter, an FSS model based on the filter approach is built, which uses the simulated annealing genetic algorithm. Experimental results show that convergence and stability of this algorithm are adequately achieved.
文摘Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated multi robot manipulators. Over the task space of a multi robot, a strategy of decoupled planning is also applied to the evolutionary process, which enables a multi robot to avoid falling into deadlock and calculating of composite C space. Finally, two representative tests are given to validate A SA GA and the strategy of decoupled planning.
文摘Aiming at the problem of long time-consuming and low accuracy of existing age estimation approaches,a new age estimation method using Gabor feature fusion,and an improved atomic search algorithm for feature selection is proposed.Firstly,texture features of five scales and eight directions in the face region are extracted by Gabor wavelet transform.The statistical histogram is introduced to encode and fuse the directional index with the largest feature value on Gabor scales.Secondly,a new hybrid feature selection algorithm chaotic improved atom search optimisation with simulated annealing(CIASO-SA)is presented,which is based on an improved atomic search algorithm and the simulated annealing algorithm.Besides,the CIASO-SA algorithm introduces a chaos mechanism during atomic initialisation,significantly improving the convergence speed and accuracy of the algorithm.Finally,a support vector machine(SVM)is used to get classification results of the age group.To verify the performance of the proposed algorithm,face images with three resolutions in the Adience dataset are tested.Using the Gabor real part fusion feature at 48�48 resolution,the average accuracy and 1-off accuracy of age classification exhibit a maximum of 60.4%and 85.9%,respectively.Obtained results prove the superiority of the proposed algorithm over the state-of-the-art methods,which is of great referential value for application to the mobile terminals.