In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteris...In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteristics of varying rate, interference,and routing in wireless transmission channels,the concepts of equivalent delay (ED) and networked condition index (NCI) are introduced.Also,the analytic lower and upper bounds of EDs are obtained.Furthermore,we model the WNCS as a multicontroller switched system (MSS) under consideration of EDs and loss index in the wireless transmission.Sufficient stability condition of the closed-loop WNCS and corresponding dynamic state feedback controllers are derived in terms of linear matrix inequality (LMI). Numerical results show the validity and advantage of our proposed control strategies.展开更多
This paper presents a pragmatic adaptive scheme for TuCM over slowly fading channels. The adaptive scheme employs a single turbo coded modulator composed of a variable-rate turbo encoder and a variable-rate variable-p...This paper presents a pragmatic adaptive scheme for TuCM over slowly fading channels. The adaptive scheme employs a single turbo coded modulator composed of a variable-rate turbo encoder and a variable-rate variable-power MQAM for all fading regions, so it has an acceptable complexity to implement. The optimal adaptive TuCM scheme is determined subject to various system constraints. Simulations have been performed to measure the performance of the scheme for different parameters. It is shown that adopting both the turbo coded modulator and the transmit power achieves a performance within 2.5 dB of the fading channel capacity.展开更多
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio...Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.展开更多
Satellite communication develops rapidly due to its global coverage and is unrestricted to the ground environment. However, compared with the traditional ground TCP/IP network, a satellite-to-ground link has a more ex...Satellite communication develops rapidly due to its global coverage and is unrestricted to the ground environment. However, compared with the traditional ground TCP/IP network, a satellite-to-ground link has a more extensive round trip time(RTT) and a higher packet loss rate,which takes more time in error recovery and wastes precious channel resources. Forward error correction(FEC) is a coding method that can alleviate bit error and packet loss, but how to achieve high throughput in the dynamic network environment is still a significant challenge. Inspired by the deep learning technique, this paper proposes a signal-to-noise ratio(SNR) based adaptive coding modulation method. This method can maximize channel utilization while ensuring communication quality and is suitable for satellite-to-ground communication scenarios where the channel state changes rapidly. We predict the SNR using the long short-term memory(LSTM) network that considers the past channel status and real-time global weather. Finally, we use the optimal matching rate(OMR) to evaluate the pros and cons of each method quantitatively. Extensive simulation results demonstrate that our proposed LSTM-based method outperforms the state-of-the-art prediction algorithms significantly in mean absolute error(MAE). Moreover, it leads to the least spectrum waste.展开更多
Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kind...Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kinds of channel environment were considered in this paper:the urban area,the rural area,and the open space.Four combinations of modulation and coding were designed to meet reliable communication on time-varying channel,and spectral efficiency and system throughput of these three kinds of channel environment were simulated.Based on the simulation results,this paper analysed the results and compared the performances of AMC with non-AMC system in these three kinds of channel environment.At last,we come to the conclusions:a system with AMC can achieve higher spectral efficiency and better system throughput;and the spectral efficiency and system throughput of AMC system will be higher on better satellite mobile channel.展开更多
Adaptive modulation and coding( AMC) which depends on channel state information( CSI) can make the modulation and coding scheme( MCS) for the sender changed, and make the spectrum efficiency enhanced. The traditional ...Adaptive modulation and coding( AMC) which depends on channel state information( CSI) can make the modulation and coding scheme( MCS) for the sender changed, and make the spectrum efficiency enhanced. The traditional method of AMC establishes a lookup table of MCSs at first,and then the sender chooses the proper MCS according to the CSI from feedback channel. However,this method is not suitable for frequency selective and fast fading channel. Thus, a method based on fuzzy logic cognitive engine is proposed in this paper. The type of channel is recognized by the fuzzy logic cognitive engine,then the MCSs are modified to suit for the channel type. The simulation results show that the proposed method is more suitable for frequency selective and fast fading channel. And it is more reliability under the condition of meeting the bit error rate( BER).展开更多
A practical adaptive turbo coded modulation (TuCM) scheme was proposed and its adaptive method was described. With some hardware considerations, a suboptimal optimization algorithm that the number of fading regions is...A practical adaptive turbo coded modulation (TuCM) scheme was proposed and its adaptive method was described. With some hardware considerations, a suboptimal optimization algorithm that the number of fading regions is variable was put forward. Furthermore, the cutoff fade depth of power adaptation was modified to reduce the interruption probability. The results show that the proposed adaptive TuCM comes within 3 dB of Rayleigh fading channel capacity, and exhibits about 3 dB power gain relative to the conventional adaptive trellis-coded modulation (TCM), and is easy to realize by hardware.展开更多
The traditional communication system is effectively designed for the worst-case channel state and it can not use the spectral efficiently over the time-varying multipath channel. In order to improve the spectral effic...The traditional communication system is effectively designed for the worst-case channel state and it can not use the spectral efficiently over the time-varying multipath channel. In order to improve the spectral efficiency and ensure robust and spectrally-efficient transmission over the time-varying multipath channel,a joint rate control and adaptive modulation and coding ( AMC) algorithm for adaptive transmission systems is proposed in this paper. Firstly,the proposed algorithm can formulate a modulation and coding scheme ( MCS) switching table according to the offline simulation results and the target bit error rate ( BER) . Then,the optimal MCS is selected in MCS switching table according to the channel state information ( CSI) and then passes to the transmitter and receiver to implement. So the adaptive system which always uses the optimal MCS to transmit signals uses the spectral efficiently. The simulation results validate the proposed algorithm and show that under the premise of meeting the target BER,the adaptive system performing the proposed algorithm has a higher average spectral efficiency ( ASE) than that of the non-adaptive system.展开更多
Adaptive Modulation and Coding (AMC) has gained a lot of attentions in the research of High Speed Downlink Packet Access (HSDPA). The idea is to adapt the transmission to the fast changing channel conditions by th...Adaptive Modulation and Coding (AMC) has gained a lot of attentions in the research of High Speed Downlink Packet Access (HSDPA). The idea is to adapt the transmission to the fast changing channel conditions by the use of different Modulation and Coding Schemes (MCS). This paper presents an adaptive AMC algorithm and introduces a theoretical analysis model in order to to investigate its throughput and Frame Error Rate (FER). Subject to the given FER target, our numerical and link level simulation results both show that our algorithm outperforms other existing adaptive algorithms.展开更多
An adaptive modulation and coding (AMC) scheme integrated with multi-code transmission for high speed downlink packet access is presented and some modulation and coding scheme (MCS) selection criteria are proposed to ...An adaptive modulation and coding (AMC) scheme integrated with multi-code transmission for high speed downlink packet access is presented and some modulation and coding scheme (MCS) selection criteria are proposed to maximize single user data rates. Based on link-level performance analysis, the MCS selection criteria are proposed with the constraints of QoS requirement, modulation level, channel coding rate and the number of available channelization codes. By allowing multiple transmission parameters changing, these criteria make the scheme more flexible to time-varying mobile channel with comparatively low complexity through a look-up table method. The AMC scheme is sensitive to the changes of channel condition and can save the channelization codes in an applicable way by applying these criteria.展开更多
In this paper, we analyze the physical layer abstraction for bit interleaved coded orthogonal frequency division multiplexing(BIC-OFDM) system from a parallel bit channel perspective. By combining the exponential effe...In this paper, we analyze the physical layer abstraction for bit interleaved coded orthogonal frequency division multiplexing(BIC-OFDM) system from a parallel bit channel perspective. By combining the exponential effective SNR(signal-to-noise ratio) mapping(EESM) with the maximum a posteriori(MAP) algorithm, a bit LLR(log-likelihood ratio) wise EESM(BL-EESM) method is proposed. This method can abstract the link performance with high accuracy, especially for the case when channel estimation is imperfect. Afterward, the BL-EESM method is simplified by utilizing the non-linear quantization idea, which can reduce the times of exponential operation by two orders of magnitude at wide system bandwidth, yet shows little loss in accuracy. Our proposal can be applied to both system level simulations to save the time consumption and to practical terminals to facilitate the adaptive modulation and coding(AMC) procedure, bringing about throughput improvement at low hardware cost.展开更多
In wireless communications systems with time-division duplex (TDD) deployment, channel reciprocity and symmetric interference between transmitter and receiver sides are two widely-adopted assumptions for the design of...In wireless communications systems with time-division duplex (TDD) deployment, channel reciprocity and symmetric interference between transmitter and receiver sides are two widely-adopted assumptions for the design of optimal adaptation transmission mode. However, in practice, there is an undesirable but non-negligible effect, namely the asymmetric interference, that makes the assumptions no longer valid. In this paper, a simple closed-loop feedback method of compensating interference asymmetry in TDD multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system is proposed. The system makes the estimated interference at transmit-side be able to track the instantaneous receive-side interference dynamically. The proposed method maintains constant frame error rate (FER) by adopting adaptive modulation coding (AMC) and power loading. The final simulations have verified the effectiveness of the new method.展开更多
According to the analysis of meteor burst communication (MBC) mechanism, a model of signal processing based on the structure of data frame is suggested for adaptive modulation and coding (AMC) of MBC system in this pa...According to the analysis of meteor burst communication (MBC) mechanism, a model of signal processing based on the structure of data frame is suggested for adaptive modulation and coding (AMC) of MBC system in this paper. There are two distinct modes of operation for signal processing: acquisition and tracking. The acquisition mode is a training period to initialize the channel estimation by frame header. The tracking mode is jointly to equalize payload data and to trace channel, where the principle of per-survivor processing (PSP) for maximum likelihood sequence detection (MLSD) is performed. A suboptimal method called D-PSP is adopted to save the computational time and memory size, which agrees with the slow-fading characteristic of meteor channel and makes the MLSD possible for adaptive modulation and coding of MBC system. Computer simulation results are included to support our development.展开更多
We address the problem of adaptive modulation and coding scheme(AMCS) for a multi-input multioutput(MIMO) system in presence of time-varying transmitting correlation.Antenna subset selection and quasiorthogonal space-...We address the problem of adaptive modulation and coding scheme(AMCS) for a multi-input multioutput(MIMO) system in presence of time-varying transmitting correlation.Antenna subset selection and quasiorthogonal space-time block code(QOSTBC) have different error performances with different signal-to-noise ratios(SNRs) and in different spatial correlation scenarios.The error performance can be improved by selecting an appropriate transmission scheme to adapt to various channel conditions.The maximum distance criterion is the simplest and very effective algorithm for the antenna subset selection without needs of complex calculation and channel state information at transmitter(CSIT).The minimum error performance criteria and the simplified linear decision strategy are developed for constant transmission rate traffic to select the optimal transmission scheme.It can dramatically decrease algorithm complexity for obtaining error probability according to the known quantities comparing with using instant CSIT.Simulation results show that,remarkable performances including low SNR and weak spatial correlation at the expense of simple calculation and almost no bandwidth loss by adopting AMCS can be achieved.The proposed AMCS improves robustness of slowly varying spatial correlated channels.展开更多
基金National Outstanding Youth Founda-tion (No.60525303)National Natural Science Foundation of China(No.60404022,60704009)Natural Science Foundation of Hebei Province (No.F2005000390,F2006000270).
文摘In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteristics of varying rate, interference,and routing in wireless transmission channels,the concepts of equivalent delay (ED) and networked condition index (NCI) are introduced.Also,the analytic lower and upper bounds of EDs are obtained.Furthermore,we model the WNCS as a multicontroller switched system (MSS) under consideration of EDs and loss index in the wireless transmission.Sufficient stability condition of the closed-loop WNCS and corresponding dynamic state feedback controllers are derived in terms of linear matrix inequality (LMI). Numerical results show the validity and advantage of our proposed control strategies.
基金This project was supported by the National High Technology Research and Development Program of China (2001AA121031) the National Natural Science Foundation of China (60072028).
文摘This paper presents a pragmatic adaptive scheme for TuCM over slowly fading channels. The adaptive scheme employs a single turbo coded modulator composed of a variable-rate turbo encoder and a variable-rate variable-power MQAM for all fading regions, so it has an acceptable complexity to implement. The optimal adaptive TuCM scheme is determined subject to various system constraints. Simulations have been performed to measure the performance of the scheme for different parameters. It is shown that adopting both the turbo coded modulator and the transmit power achieves a performance within 2.5 dB of the fading channel capacity.
基金supported by the 2011 China Aerospace Science and Technology Foundationthe Certain Ministry Foundation under Grant No.20212HK03010
文摘Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances.
基金supported by the National High Technology Research and Development Program of China (No. 2020YFB1806004)。
文摘Satellite communication develops rapidly due to its global coverage and is unrestricted to the ground environment. However, compared with the traditional ground TCP/IP network, a satellite-to-ground link has a more extensive round trip time(RTT) and a higher packet loss rate,which takes more time in error recovery and wastes precious channel resources. Forward error correction(FEC) is a coding method that can alleviate bit error and packet loss, but how to achieve high throughput in the dynamic network environment is still a significant challenge. Inspired by the deep learning technique, this paper proposes a signal-to-noise ratio(SNR) based adaptive coding modulation method. This method can maximize channel utilization while ensuring communication quality and is suitable for satellite-to-ground communication scenarios where the channel state changes rapidly. We predict the SNR using the long short-term memory(LSTM) network that considers the past channel status and real-time global weather. Finally, we use the optimal matching rate(OMR) to evaluate the pros and cons of each method quantitatively. Extensive simulation results demonstrate that our proposed LSTM-based method outperforms the state-of-the-art prediction algorithms significantly in mean absolute error(MAE). Moreover, it leads to the least spectrum waste.
文摘Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kinds of channel environment were considered in this paper:the urban area,the rural area,and the open space.Four combinations of modulation and coding were designed to meet reliable communication on time-varying channel,and spectral efficiency and system throughput of these three kinds of channel environment were simulated.Based on the simulation results,this paper analysed the results and compared the performances of AMC with non-AMC system in these three kinds of channel environment.At last,we come to the conclusions:a system with AMC can achieve higher spectral efficiency and better system throughput;and the spectral efficiency and system throughput of AMC system will be higher on better satellite mobile channel.
基金National Natural Science Foundations of China(Nos.61071104,61201143)Innovation Foundation of China Academy of Space Technology(CAST)(ITS)(No.F-W-YY-2013-016)
文摘Adaptive modulation and coding( AMC) which depends on channel state information( CSI) can make the modulation and coding scheme( MCS) for the sender changed, and make the spectrum efficiency enhanced. The traditional method of AMC establishes a lookup table of MCSs at first,and then the sender chooses the proper MCS according to the CSI from feedback channel. However,this method is not suitable for frequency selective and fast fading channel. Thus, a method based on fuzzy logic cognitive engine is proposed in this paper. The type of channel is recognized by the fuzzy logic cognitive engine,then the MCSs are modified to suit for the channel type. The simulation results show that the proposed method is more suitable for frequency selective and fast fading channel. And it is more reliability under the condition of meeting the bit error rate( BER).
基金National Natural Science Foundation ofChina (60 0 72 0 2 8) High Technology Research and Developm entProgram (863 ) of China (2 0 0 1AA12 10 3 1)
文摘A practical adaptive turbo coded modulation (TuCM) scheme was proposed and its adaptive method was described. With some hardware considerations, a suboptimal optimization algorithm that the number of fading regions is variable was put forward. Furthermore, the cutoff fade depth of power adaptation was modified to reduce the interruption probability. The results show that the proposed adaptive TuCM comes within 3 dB of Rayleigh fading channel capacity, and exhibits about 3 dB power gain relative to the conventional adaptive trellis-coded modulation (TCM), and is easy to realize by hardware.
基金Sponsored by the National Natural Science Foundation and Civil Aviation Administration of China(Grant No.61101122 and 61071104)the Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory(Grant No.ITD-U12004/K1260010)
文摘The traditional communication system is effectively designed for the worst-case channel state and it can not use the spectral efficiently over the time-varying multipath channel. In order to improve the spectral efficiency and ensure robust and spectrally-efficient transmission over the time-varying multipath channel,a joint rate control and adaptive modulation and coding ( AMC) algorithm for adaptive transmission systems is proposed in this paper. Firstly,the proposed algorithm can formulate a modulation and coding scheme ( MCS) switching table according to the offline simulation results and the target bit error rate ( BER) . Then,the optimal MCS is selected in MCS switching table according to the channel state information ( CSI) and then passes to the transmitter and receiver to implement. So the adaptive system which always uses the optimal MCS to transmit signals uses the spectral efficiently. The simulation results validate the proposed algorithm and show that under the premise of meeting the target BER,the adaptive system performing the proposed algorithm has a higher average spectral efficiency ( ASE) than that of the non-adaptive system.
文摘Adaptive Modulation and Coding (AMC) has gained a lot of attentions in the research of High Speed Downlink Packet Access (HSDPA). The idea is to adapt the transmission to the fast changing channel conditions by the use of different Modulation and Coding Schemes (MCS). This paper presents an adaptive AMC algorithm and introduces a theoretical analysis model in order to to investigate its throughput and Frame Error Rate (FER). Subject to the given FER target, our numerical and link level simulation results both show that our algorithm outperforms other existing adaptive algorithms.
文摘An adaptive modulation and coding (AMC) scheme integrated with multi-code transmission for high speed downlink packet access is presented and some modulation and coding scheme (MCS) selection criteria are proposed to maximize single user data rates. Based on link-level performance analysis, the MCS selection criteria are proposed with the constraints of QoS requirement, modulation level, channel coding rate and the number of available channelization codes. By allowing multiple transmission parameters changing, these criteria make the scheme more flexible to time-varying mobile channel with comparatively low complexity through a look-up table method. The AMC scheme is sensitive to the changes of channel condition and can save the channelization codes in an applicable way by applying these criteria.
基金the Shanghai Basic Research KeyProject(No.11DZ1500206)the NationalScience and Technology Major Project of China(No.2012ZX03001013-003)
文摘In this paper, we analyze the physical layer abstraction for bit interleaved coded orthogonal frequency division multiplexing(BIC-OFDM) system from a parallel bit channel perspective. By combining the exponential effective SNR(signal-to-noise ratio) mapping(EESM) with the maximum a posteriori(MAP) algorithm, a bit LLR(log-likelihood ratio) wise EESM(BL-EESM) method is proposed. This method can abstract the link performance with high accuracy, especially for the case when channel estimation is imperfect. Afterward, the BL-EESM method is simplified by utilizing the non-linear quantization idea, which can reduce the times of exponential operation by two orders of magnitude at wide system bandwidth, yet shows little loss in accuracy. Our proposal can be applied to both system level simulations to save the time consumption and to practical terminals to facilitate the adaptive modulation and coding(AMC) procedure, bringing about throughput improvement at low hardware cost.
基金the National Natural Science Foundation of China (No. 60572130)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University+3 种基金the Research Fund of Qing-Lan Engineering, Jiangsu Provincethe Key Project of Natural Science Research Program of Universities, Jiangsu Province (No. 08KJD510001)the Doctorial Fundation of Ministry of Educationthe National Basic Research Program (973) of China (No. 2007CB310607)
文摘In wireless communications systems with time-division duplex (TDD) deployment, channel reciprocity and symmetric interference between transmitter and receiver sides are two widely-adopted assumptions for the design of optimal adaptation transmission mode. However, in practice, there is an undesirable but non-negligible effect, namely the asymmetric interference, that makes the assumptions no longer valid. In this paper, a simple closed-loop feedback method of compensating interference asymmetry in TDD multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system is proposed. The system makes the estimated interference at transmit-side be able to track the instantaneous receive-side interference dynamically. The proposed method maintains constant frame error rate (FER) by adopting adaptive modulation coding (AMC) and power loading. The final simulations have verified the effectiveness of the new method.
文摘According to the analysis of meteor burst communication (MBC) mechanism, a model of signal processing based on the structure of data frame is suggested for adaptive modulation and coding (AMC) of MBC system in this paper. There are two distinct modes of operation for signal processing: acquisition and tracking. The acquisition mode is a training period to initialize the channel estimation by frame header. The tracking mode is jointly to equalize payload data and to trace channel, where the principle of per-survivor processing (PSP) for maximum likelihood sequence detection (MLSD) is performed. A suboptimal method called D-PSP is adopted to save the computational time and memory size, which agrees with the slow-fading characteristic of meteor channel and makes the MLSD possible for adaptive modulation and coding of MBC system. Computer simulation results are included to support our development.
基金the Chinese Scholarship Council for the financial support
文摘We address the problem of adaptive modulation and coding scheme(AMCS) for a multi-input multioutput(MIMO) system in presence of time-varying transmitting correlation.Antenna subset selection and quasiorthogonal space-time block code(QOSTBC) have different error performances with different signal-to-noise ratios(SNRs) and in different spatial correlation scenarios.The error performance can be improved by selecting an appropriate transmission scheme to adapt to various channel conditions.The maximum distance criterion is the simplest and very effective algorithm for the antenna subset selection without needs of complex calculation and channel state information at transmitter(CSIT).The minimum error performance criteria and the simplified linear decision strategy are developed for constant transmission rate traffic to select the optimal transmission scheme.It can dramatically decrease algorithm complexity for obtaining error probability according to the known quantities comparing with using instant CSIT.Simulation results show that,remarkable performances including low SNR and weak spatial correlation at the expense of simple calculation and almost no bandwidth loss by adopting AMCS can be achieved.The proposed AMCS improves robustness of slowly varying spatial correlated channels.