The high frequency (HF) channel simulators with time-varying parameters based on the Watterson model are analyzed. The methods of simulating the HF channel with time-varying parameters are proposed. The linearly time-...The high frequency (HF) channel simulators with time-varying parameters based on the Watterson model are analyzed. The methods of simulating the HF channel with time-varying parameters are proposed. The linearly time-varying delay spread is introduced into the channel simulators to simulate the transition states between two channel modes of CCIR520-1. Two signals, including a 500 Hz and a 1 000 Hz bandwidth signal are respectively input into the standard Watterson HF channel model and the proposed channel model with time-varying parameters. Some simulation results prove that the proposed HF channel model with time-varying parameters can reflect the time-varying characteristics of frequency selected fading of HF channel.展开更多
We report an experiment of adaptive compensation for first-order polarization mode dispersion (PMD) in 10-Gb/s return zero (RZ) optical communication system. The compensated differential group delay (DGD) is up to 30 ...We report an experiment of adaptive compensation for first-order polarization mode dispersion (PMD) in 10-Gb/s return zero (RZ) optical communication system. The compensated differential group delay (DGD) is up to 30 ps. The quasi-real-time, less than one second, PMD compensation is realized. In the experiment, for the first time, the algorithm so-called particle swarm optimization (PSO) is used to control feedback compensation system.展开更多
An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of ...An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO). The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second-order PMD, and he compensator is shown to be bit rate independent. The optimum searching time is within one huudred milliseconds.展开更多
For the performance issues of satellite transceivers suffering passive intermodulation interference,a novel and effective digital suppression algorithm is presented in this paper.In contrast to analog approaches,digit...For the performance issues of satellite transceivers suffering passive intermodulation interference,a novel and effective digital suppression algorithm is presented in this paper.In contrast to analog approaches,digital passive intermodulation(PIM) suppression approaches can be easily reconfigured and therefore are highly attractive for future satellite communication systems.A simplified model of nonlinear distortion from passive microwave devices is established in consideration of the memory effect.The multiple high-order PIM products falling into the receiving band can be described as a bilinear predictor function.A suppression algorithm based on a bilinear polynomial decorrelated adaptive filter is proposed for baseband digital signal processing.In consideration of the time-varying characteristics of passive intermodulation,this algorithm can achieve the rapidness of online interference estimation and low complexity with less consumption of resources.Numerical simulation results show that the algorithm can effectively compensate the passive intermodulation interference,and achieve a high signal-to-interference ratio gain.展开更多
文摘The high frequency (HF) channel simulators with time-varying parameters based on the Watterson model are analyzed. The methods of simulating the HF channel with time-varying parameters are proposed. The linearly time-varying delay spread is introduced into the channel simulators to simulate the transition states between two channel modes of CCIR520-1. Two signals, including a 500 Hz and a 1 000 Hz bandwidth signal are respectively input into the standard Watterson HF channel model and the proposed channel model with time-varying parameters. Some simulation results prove that the proposed HF channel model with time-varying parameters can reflect the time-varying characteristics of frequency selected fading of HF channel.
基金This work was supported by the National "863"High Technology Prohect of China(No.2001aa122041),and the National Natural Science Foundation of China(No.60072042).
文摘We report an experiment of adaptive compensation for first-order polarization mode dispersion (PMD) in 10-Gb/s return zero (RZ) optical communication system. The compensated differential group delay (DGD) is up to 30 ps. The quasi-real-time, less than one second, PMD compensation is realized. In the experiment, for the first time, the algorithm so-called particle swarm optimization (PSO) is used to control feedback compensation system.
基金This work was supported by the National "863" High Technology Project (No. 2001AA122041) and the National Natural Science Foundation of China (No. 60072042 and 60377026).
文摘An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO). The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second-order PMD, and he compensator is shown to be bit rate independent. The optimum searching time is within one huudred milliseconds.
基金supported by the National Natural SciencFoundation of China(Nos.U1636125,61601027)
文摘For the performance issues of satellite transceivers suffering passive intermodulation interference,a novel and effective digital suppression algorithm is presented in this paper.In contrast to analog approaches,digital passive intermodulation(PIM) suppression approaches can be easily reconfigured and therefore are highly attractive for future satellite communication systems.A simplified model of nonlinear distortion from passive microwave devices is established in consideration of the memory effect.The multiple high-order PIM products falling into the receiving band can be described as a bilinear predictor function.A suppression algorithm based on a bilinear polynomial decorrelated adaptive filter is proposed for baseband digital signal processing.In consideration of the time-varying characteristics of passive intermodulation,this algorithm can achieve the rapidness of online interference estimation and low complexity with less consumption of resources.Numerical simulation results show that the algorithm can effectively compensate the passive intermodulation interference,and achieve a high signal-to-interference ratio gain.