期刊文献+
共找到14,452篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptive Control of Flexible Redundant Manipulators Using Neural Networks 被引量:2
1
作者 宋轶民 李建新 +1 位作者 王世宇 刘建平 《Transactions of Tianjin University》 EI CAS 2006年第6期429-433,共5页
An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attach... An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy. 展开更多
关键词 flexible manipulators kinematic redundancy active vibration control neural networks adaptive control
下载PDF
Adaptive control of machining process based on extended entropy square error and wavelet neural network 被引量:2
2
作者 赖兴余 叶邦彦 +1 位作者 李伟光 鄢春艳 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第3期349-353,共5页
Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and w... Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and wavelet neural network(WNN).Extended entropy square error function is defined and its availability is proved theoretically.Replacing the mean square error criterion of BP algorithm with the EESE criterion,the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter,translating parameter of the wavelet and neural network weights.Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network.The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions,thus improving the machining efficiency and protecting the tool. 展开更多
关键词 machining process adaptive control extended entropy square error wavelet neural network
下载PDF
Adaptive control of system with hysteresis using neural networks 被引量:3
3
作者 Li Chuntao Tan Yonghong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期163-167,共5页
An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the thr... An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the three-layer neural network (NN), whose weights are derived from Lyapunov stability analysis, guarantees closed-loop semiglobal stability and convergence of the tracking errors to a small residual set. An example is used to confirm the effectiveness of the proposed control scheme. 展开更多
关键词 neural networks HYSTERESIS adaptive control preisach model.
下载PDF
Study on Adaptive Control with Neural Network Compensation
4
作者 单剑锋 黄忠华 崔占忠 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期187-189,共3页
A scheme of adaptive control based on a recurrent neural network with a neural network compensation is presented for a class of nonlinear systems with a nonlinear prefix. The recurrent neural network is used to identi... A scheme of adaptive control based on a recurrent neural network with a neural network compensation is presented for a class of nonlinear systems with a nonlinear prefix. The recurrent neural network is used to identify the unknown nonlinear part and compensate the difference between the real output and the identified model output. The identified model of the controlled object consists of a linear model and the neural network. The generalized minimum variance control method is used to identify parameters, which can deal with the problem of adaptive control of systems with unknown nonlinear part, which can not be controlled by traditional methods. Simulation results show that this algorithm has higher precision, faster convergent speed. 展开更多
关键词 recurrent neural network neural network compensation general minimum variance control
下载PDF
Adaptive Control Based on Neural Networks for an Uncertain 2-DOF Helicopter System With Input Deadzone and Output Constraints 被引量:15
5
作者 Yuncheng Ouyang Lu Dong +1 位作者 Lei Xue Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第3期807-815,共9页
In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertaintie... In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertainties and input deadzone, the neural network technique is introduced because of its capability in approximation. In order to update the weights of the neural network, an adaptive control method is utilized to improve the system adaptability. Furthermore, the integral barrier Lyapunov function(IBLF) is adopt in control design to guarantee the condition of output constraints and boundedness of the corresponding tracking errors. The Lyapunov direct method is applied in the control design to analyze system stability and convergence. Finally, numerical simulations are conducted to prove the feasibility and effectiveness of the proposed control based on the model of Quanser's 2-DOF helicopter. 展开更多
关键词 2-degree of FREEDOM (DOF) helicopter adaptive control INPUT DEADZONE integral barrier Lyapunov function neural networks output constraints
下载PDF
The adaptive control using BP neural networks for a nonlinear servo-motor 被引量:2
6
作者 Xinliang ZHANG Yonghong TAN 《控制理论与应用(英文版)》 EI 2008年第3期273-276,共4页
The servo-motor possesses a strongly nonlinear property due to the effect of the stimulating input voltage, load-torque and environmental operating conditions. So it is rather difficult to derive a traditional mathema... The servo-motor possesses a strongly nonlinear property due to the effect of the stimulating input voltage, load-torque and environmental operating conditions. So it is rather difficult to derive a traditional mathematical model which is capable of expressing both its dynamics and steady-state characteristics. A neural network-based adaptive control strategy is proposed in this paper. In this method, two neural networks have been adopted for system identification (NNI) and control (NNC), respectively. Then, the commonly-used specialized learning has been modified, by taking the NNI output as the approximation output of the servo-motor during the weights training to get sensitivity information. Moreover, the rule for choosing the learning rate is given on the basis of the analysis of Lyapunov stability. Finally, an example of applying the proposed control strategy on a servo-motor is presented to show its effectiveness. 展开更多
关键词 Servo-motor NONLINEARITY neural networks based control Lyapunov stability Learning rate
下载PDF
Research on Power Control of Wind Power Generation Based on Neural Network Adaptive Control 被引量:1
7
作者 董海鹰 孙传华 《Journal of Measurement Science and Instrumentation》 CAS 2010年第2期173-177,共5页
For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve ... For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve the perfomance of power control. The PID parameters are corrected by the gradient descent method, and Radial Basis Functiion (RBF) neural network is used as the system identifier in this method. Sinlation results show that by using neural network adaptive PID controller the generator power control can inhibit effectively the speed and affect the output prover of generator. The dynamic performnce and robustness of the controlled system is good, and the peformance of wind power system is improved. 展开更多
关键词 wind power generation power control PID adaptive oontroi neural network
下载PDF
Adaptive Control by Using Neural Networks
8
作者 郝继红 吕强 +1 位作者 段运波 许耀铭 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1994年第2期21-25,共5页
AdaptiveControlbyUsingNeuralNetworks¥(郝继红)(吕强)(段运波)(许耀铭)HAOJihong;LUQiang;DUANYunbo;XUYaoming(Dept.ofPowerEn... AdaptiveControlbyUsingNeuralNetworks¥(郝继红)(吕强)(段运波)(许耀铭)HAOJihong;LUQiang;DUANYunbo;XUYaoming(Dept.ofPowerEngineering,Harbini... 展开更多
关键词 ss: neural networks FUNCTIONAL APPROXIMATION adaptive control identification
下载PDF
Study on the Robot Robust Adaptive Control Based on Neural Networks
9
作者 温淑焕 王洪瑞 吴丽艳 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第4期55-58,共4页
Force control based on neural networks is presented. Under the framework of hybrid control, an RBF neural network is used to compensate for all the uncertainties from robot dynamics and unknown environment first. The ... Force control based on neural networks is presented. Under the framework of hybrid control, an RBF neural network is used to compensate for all the uncertainties from robot dynamics and unknown environment first. The technique will improve the adaptability to environment stiffness when the end-effector is in contact with the environment, and does not require any a priori knowledge on the upper bound of syste uncertainties. Moreover, it need not compute the inverse of inertia matrix. Learning algorithms for neural networks to minimize the force error directly are designed. Simulation results have shown a better force/position tracking when neural network is used. 展开更多
关键词 ROBOTICS force/position control neural network hybrid control.
下载PDF
Lyapunov-Based Dynamic Neural Network for Adaptive Control of Complex Systems
10
作者 Farouk Zouari Kamel Ben Saad Mohamed Benrejeb 《Journal of Software Engineering and Applications》 2012年第4期225-248,共24页
In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-o... In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-output data. The direct adaptive approach is performed after the training process is achieved. A lyapunov-Base training algorithm is proposed and used to adjust on-line the network weights so that the neural model output follows the desired one. The simulation results obtained verify the effectiveness of the proposed control method. 展开更多
关键词 Complex DYNAMICAL Systems LYAPUNOV Approach RECURRENT neural networks adaptive control
下载PDF
Identification and Adaptive Control of Dynamic Nonlinear Systems Using Sigmoid Diagonal Recurrent Neural Network
11
作者 Tarek Aboueldahab Mahumod Fakhreldin 《Intelligent Control and Automation》 2011年第3期176-181,共6页
The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done by addi... The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done by adding a sigmoid weight victor in the hidden layer neurons to adapt of the shape of the sigmoid function making their outputs not restricted to the sigmoid function output. Also, we introduce a dynamic back propagation learning algorithm to train the new proposed network parameters. The simulation results showed that the (SDRNN) is more efficient and accurate than the DRNN in both the identification and adaptive control of nonlinear dynamical systems. 展开更多
关键词 SIGMOID DIAGONAL RECURRENT neural networks DYNAMIC BACK Propagation DYNAMIC Nonlinear Systems adaptive control
下载PDF
Adaptive Control Design for High-order MIMO Nonlinear Time-delay Systems Based on Neural Network
12
作者 Jimin Yu Zhixu Peng Linqin Cai Baohua Wu 《控制工程期刊(中英文版)》 2014年第2期43-50,共8页
关键词 控制工程 自动化 自动控制 控制理论
下载PDF
A Fractional-Order Ultra-Local Model-Based Adaptive Neural Network Sliding Mode Control of n-DOF Upper-Limb Exoskeleton With Input Deadzone
13
作者 Dingxin He HaoPing Wang +1 位作者 Yang Tian Yida Guo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期760-781,共22页
This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Co... This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method. 展开更多
关键词 adaptive control input deadzone model-free control n-DOF upper-limb exoskeleton neural network
下载PDF
Time-varying parameters estimation with adaptive neural network EKF for missile-dual control system
14
作者 YUAN Yuqi ZHOU Di +1 位作者 LI Junlong LOU Chaofei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期451-462,共12页
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST... In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model. 展开更多
关键词 long-short-term memory(LSTM)neural network extended Kalman filter(EKF) rolling training time-varying parameters estimation missile dual control system
下载PDF
Global approximation based adaptive RBF neural network control for supercavitating vehicles 被引量:11
15
作者 LI Yang LIU Mingyong +1 位作者 ZHANG Xiaojian PENG Xingguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期797-804,共8页
A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly wit... A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation. 展开更多
关键词 radial basis function (RBF) neural network computedtorque controller (CTC) adaptive control supercavitating vehicle(SV)
下载PDF
Adaptive RBF neural network control of robot with actuator nonlinearities 被引量:5
16
作者 Jinkun LIU, Yu LU (School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China) 《控制理论与应用(英文版)》 EI 2010年第2期249-256,共8页
In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinear... In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinearities compensator. Since the actuator nonlinearities are usually included in the robot driving motor, a compensator using radial basis function (RBF) network is proposed to estimate the actuator nonlinearities and eliminate their effects. Subsequently, an adaptive neural network controller that neither requires the evaluation of inverse dynamical model nor the time-consuming training process is given. In addition, GL matrix and its product operator are introduced to help prove the stability of the closed control system. Considering the adaptive neural network controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded (UUB). The whole scheme provides a general procedure to control the robot manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion. 展开更多
关键词 adaptive control RBF neural network Actuator nonlinearity Robot manipulator DEADZONE
下载PDF
Adaptive control of parallel manipulators via fuzzy-neural network algorithm 被引量:3
17
作者 Dachang ZHU Yuefa FANG 《控制理论与应用(英文版)》 EI 2007年第3期295-300,共6页
This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric u... This paper considers adaptive control of parallel manipulators combined with fuzzy-neural network algorithms (FNNA). With this algorithm, the robustness is guaranteed by the adaptive control law and the parametric uncertainties are eliminated. FNNA is used to handle model uncertainties and external disturbances. In the proposed control scheme, we consider modifying the weight of fuzzy rules and present these rules to a MIMO system of parallel manipulators with more than three degrees-of-freedom (DoF). The algorithm has the advantage of not requiring the inverse of the Jacobian matrix especially for the low DoF parallel manipulators. The validity of the control scheme is shown through numerical simulations of a 6-RPS parallel manipulator with three DoF. 展开更多
关键词 Parallel manipulator adaptive control Fuzzy neural network algorithm SIMULATION
下载PDF
A New Robust Adaptive Neural Network Backstepping Control for Single Machine Infinite Power System With TCSC 被引量:4
18
作者 Yanhong Luo Shengnan Zhao +1 位作者 Dongsheng Yang Huaguang Zhang 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期48-56,共9页
For a single machine infinite power system with thyristor controlled series compensation(TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we prese... For a single machine infinite power system with thyristor controlled series compensation(TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we present a robust adaptive backstepping control scheme based on the radial basis function neural network(RBFNN). The RBFNN is introduced to approximate the complex nonlinear function involving uncertainties and external unknown disturbances, and meanwhile a new robust term is constructed to further estimate the system residual error,which removes the requirement of knowing the upper bound of the disturbances and uncertainty terms. The stability analysis of the power system is presented based on the Lyapunov function,which can guarantee the uniform ultimate boundedness(UUB) of all parameters and states of the whole closed-loop system. A comparison is made between the RBFNN-based robust adaptive control and the general backstepping control in the simulation part to verify the effectiveness of the proposed control scheme. 展开更多
关键词 Backstepping control radial basis function neural network(RBFNN) robust adaptive control thyristor controlled series compensation(TCSC) uniform ultimate boundedness(UUB)
下载PDF
Adaptive integral dynamic surface control based on fully tuned radial basis function neural network 被引量:2
19
作者 Li Zhou Shumin Fei Changsheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1072-1078,共7页
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid... An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach. 展开更多
关键词 adaptive control integral dynamic surface control fully tuned radial basis function neural network.
下载PDF
ADAPTIVE FLIGHT CONTROL SYSTEM OF ARMED HELICOPTER USING WAVELET NEURAL NETWORK METHOD 被引量:1
20
作者 ZHURong-gang JIANGChangsheng FENGBin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第2期157-162,共6页
A discussion is devoted to the design of an adaptive flight control system of the armed helicopter using wavelet neural network method. Firstly, the control loop of the attitude angle is designed with a dynamic invers... A discussion is devoted to the design of an adaptive flight control system of the armed helicopter using wavelet neural network method. Firstly, the control loop of the attitude angle is designed with a dynamic inversion scheme in a quick loop and a slow loop. respectively. Then, in order to compensate the error caused by dynamic inversion, the adaptive flight control system of the armed helicopter using wavelet neural network method is put forward, so the BP wavelet neural network and the Lyapunov stable wavelet neural network are used to design the helicopter flight control system. Finally, the typical maneuver flight is simulated to demonstrate its validity and effectiveness. Result proves that the wavelet neural network has an engineering practical value and the effect of WNN is good. 展开更多
关键词 adaptive control helicopter flight control system dynamic inversion wavelet neural network maneuver flight
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部