Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using ...Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using different technologies.Tall buildings are more susceptible to vibrations such as wind and earthquakes.Therefore,vibration control has become an important issue in civil engineering.This study optimizes tuned mass damper inerter(TMDI)using far-fault ground motion records.This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm.Structure displacement and total acceleration against earthquake load are analyzed to assess the performance of the TMDI system.The effect of the inerter when connected to different floors is observed,and the results are compared to the conventional tuned mass damper(TMD).It is indicated that the case of connecting the inerter force to the 5th floor gives better results.As a result,TMD and TMDI systems reduce the displacement by 21.87%and 25.45%,respectively,and the total acceleration by 25.45%and 19.59%,respectively.These percentage reductions indicated that the structure resilience against dynamic loads can be increased using control systems.展开更多
The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained...The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement.展开更多
Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the...Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively.展开更多
A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely no...A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.展开更多
The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence spe...The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence speed and difficulty in jumping out of the local optimum.In order to overcome these shortcomings,a chaotic sparrow search algorithm based on logarithmic spiral strategy and adaptive step strategy(CLSSA)is proposed in this paper.Firstly,in order to balance the exploration and exploitation ability of the algorithm,chaotic mapping is introduced to adjust the main parameters of SSA.Secondly,in order to improve the diversity of the population and enhance the search of the surrounding space,the logarithmic spiral strategy is introduced to improve the sparrow search mechanism.Finally,the adaptive step strategy is introduced to better control the process of algorithm exploitation and exploration.The best chaotic map is determined by different test functions,and the CLSSA with the best chaotic map is applied to solve 23 benchmark functions and 3 classical engineering problems.The simulation results show that the iterative map is the best chaotic map,and CLSSA is efficient and useful for engineering problems,which is better than all comparison algorithms.展开更多
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe...The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.展开更多
Cloud computing environments,characterized by dynamic scaling,distributed architectures,and complex work-loads,are increasingly targeted by malicious actors.These threats encompass unauthorized access,data breaches,de...Cloud computing environments,characterized by dynamic scaling,distributed architectures,and complex work-loads,are increasingly targeted by malicious actors.These threats encompass unauthorized access,data breaches,denial-of-service attacks,and evolving malware variants.Traditional security solutions often struggle with the dynamic nature of cloud environments,highlighting the need for robust Adaptive Cloud Intrusion Detection Systems(CIDS).Existing adaptive CIDS solutions,while offering improved detection capabilities,often face limitations such as reliance on approximations for change point detection,hindering their precision in identifying anomalies.This can lead to missed attacks or an abundance of false alarms,impacting overall security effectiveness.To address these challenges,we propose ACIDS(Adaptive Cloud Intrusion Detection System)-PELT.This novel Adaptive CIDS framework leverages the Pruned Exact Linear Time(PELT)algorithm and a Support Vector Machine(SVM)for enhanced accuracy and efficiency.ACIDS-PELT comprises four key components:(1)Feature Selection:Utilizing a hybrid harmony search algorithm and the symmetrical uncertainty filter(HSO-SU)to identify the most relevant features that effectively differentiate between normal and anomalous network traffic in the cloud environment.(2)Surveillance:Employing the PELT algorithm to detect change points within the network traffic data,enabling the identification of anomalies and potential security threats with improved precision compared to existing approaches.(3)Training Set:Labeled network traffic data forms the training set used to train the SVM classifier to distinguish between normal and anomalous behaviour patterns.(4)Testing Set:The testing set evaluates ACIDS-PELT’s performance by measuring its accuracy,precision,and recall in detecting security threats within the cloud environment.We evaluate the performance of ACIDS-PELT using the NSL-KDD benchmark dataset.The results demonstrate that ACIDS-PELT outperforms existing cloud intrusion detection techniques in terms of accuracy,precision,and recall.This superiority stems from ACIDS-PELT’s ability to overcome limitations associated with approximation and imprecision in change point detection while offering a more accurate and precise approach to detecting security threats in dynamic cloud environments.展开更多
Due to more tag-collisions result in failed transmissions,tag anti-collision is a very vital issue in the radio frequency identification(RFID) system.However,so far decreases in communication time and increases in thr...Due to more tag-collisions result in failed transmissions,tag anti-collision is a very vital issue in the radio frequency identification(RFID) system.However,so far decreases in communication time and increases in throughput are very limited.In order to solve these problems,this paper presents a novel tag anti-collision scheme,namely adaptive hybrid search tree(AHST),by combining two algorithms of the adaptive binary-tree disassembly(ABD) and the combination query tree(CQT),in which ABD has superior tag identification velocity and CQT has optimum performance in system throughput and search timeslots.From the theoretical analysis and numerical simulations,the proposed algorithm can colligate the advantages of above algorithms,improve the system throughput and reduce the searching timeslots dramatically.展开更多
Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.T...Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development.展开更多
The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search sta...The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems.展开更多
Finding the optimal algorithm between an efficient encoding process and therate distortion is the main research in fractal image compression theory. A new method has beenproposed based on the optimization of the Least...Finding the optimal algorithm between an efficient encoding process and therate distortion is the main research in fractal image compression theory. A new method has beenproposed based on the optimization of the Least-Square Error and the orthogonal projection. A largenumber of domain blocks can be eliminated in order to speed-up fractal image compression. Moreover,since the rate-distortion performance of most fractal image coders is not satisfactory, an efficientbit allocation algorithm to improve the rate distortion is also proposed. The implementation andcomparison have been done with the feature extraction method to prove the efficiency of the proposedmethod.展开更多
The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter stra...The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter strategy and a parallel communication strategy are proposed to further improve the Cuckoo Search(CS)algorithm.This strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s ability to jump out of the local optimal.This paper compares the optimization performance of Parallel Adaptive Cuckoo Search(PACS)with CS,Parallel Cuckoo Search(PCS),Particle Swarm Optimization(PSO),Sine Cosine Algorithm(SCA),Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Differential Evolution(DE)and Artificial Bee Colony(ABC)algorithms by using the CEC-2013 test function.The results show that PACS algorithmoutperforms other algorithms in 20 of 28 test functions.Due to the superior performance of PACS algorithm,this paper uses it to solve the problem of the rectangular layout.Experimental results show that this scheme has a significant effect,and the material utilization rate is improved from89.5%to 97.8%after optimization.展开更多
In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between p...In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation.展开更多
A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider int...A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications.展开更多
This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines ...This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines of a specific car factory considered as a case study are balanced by the ACS to optimize their energy resource management. The workload variance of the line is performed as the objective function to be minimized in order to increase the productivity. In this work, the ACS is used to address the number of tasks assigned for each workstation, while the sequence of tasks is assigned by factory. Three real-world assembly line balancing (ALB) problems from a specific car factory are tested. Results obtained by the ACS are compared with those obtained by the genetic algorithm (GA), tabu search (TS) and current search (CS). As results, the ACS outperforms other algorithms. By using the ACS, the productivity can be increased and the energy consumption of the lines can be decreased significantly.展开更多
We designed the window function of the optimal Gabor transform based on the time-frequency rotation property of the fractional Fourier transform. Thus, we obtained the adaptive optimal Gabor transform in the fractiona...We designed the window function of the optimal Gabor transform based on the time-frequency rotation property of the fractional Fourier transform. Thus, we obtained the adaptive optimal Gabor transform in the fractional domain and improved the time-frequency concentration of the Gabor transform. The algorithm first searches for the optimal rotation factor, then performs the p-th FrFT of the signal and, finally, performs time and frequency analysis of the FrFT result. Finally, the algorithm rotates the plane in the fractional domain back to the normal time-frequency plane. This promotes the application of FrFT in the field of high-resolution reservoir prediction. Additionally, we proposed an adaptive search method for the optimal rotation factor using the Parseval principle in the fractional domain, which simplifies the algorithm. We carried out spectrum decomposition of the seismic signal, which showed that the instantaneous frequency slices obtained by the proposed algorithm are superior to the ones obtained by the traditional Gabor transform. The adaptive time frequency analysis is of great significance to seismic signal processing.展开更多
When the Grover’s algorithm is applied to search an unordered database, the successful probability usually decreases with the increase of marked items. In order to solve this problem, an adaptive phase matching is pr...When the Grover’s algorithm is applied to search an unordered database, the successful probability usually decreases with the increase of marked items. In order to solve this problem, an adaptive phase matching is proposed. With application of the new phase matching, when the fraction of marked items is greater , the successful probability is equal to 1 with at most two Grover iterations. The validity of the new phase matching is verified by a search example.展开更多
Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put for...Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put forward by analyzing the interrelating concept and research. The model takes the adaptive process as a multi-stage decision making problem. The 2-phases method is presented to calculate the model, which obtains the related parameters by running the colored Petri net (CPN) model of AOC2R and then searches for the result by ant colony optimization (ACO) algorithm integrated with genetic optimization techniques. The simulation results demonstrate that the proposed algorithm greatly improves the performance of AOC2R.展开更多
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se...There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.展开更多
A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent ...A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent deep excavations in soft ground.The novelty is that the modified SSA proposes adaptive adjustment strategy to create a balance between the capacity of exploitation and exploration.In AM-SSA,firstly,the population is initialized by cat mapping chaotic sequences to improve the ergodicity and randomness of the individual sparrow,enhancing the global search ability.Then the individuals are adjusted by Tent chaotic disturbance and Cauchy mutation to avoid the population being too concentrated or scattered,expanding the local search ability.Finally,the adaptive producer-scrounger number adjustment formula is introduced to balance the ability to seek the global and local optimal.In addition,it leads to the improved algorithm achieving a better accuracy level and convergence speed compared with the original SSA.To demonstrate the effectiveness and reliability of AM-SSA,23 classical benchmark functions and 25 IEEE Congress on Evolutionary Computation benchmark test functions(CEC2005),are employed as the numerical examples and investigated in comparison with some wellknown optimization algorithms.The statistical results indicate the promising performance of AM-SSA in a variety of optimization with constrained and unknown search spaces.By utilizing the AdaBoost algorithm,multiple sets of weak AMSSA-Elman predictor functions are restructured into one strong predictor by successive iterations for the tunnel deformation prediction output.Additionally,the on-site monitoring data acquired from a deep excavation project in Ningbo,China,were selected as the training and testing sample.Meanwhile,the predictive outcomes are compared with those of other different optimization and machine learning techniques.In the end,the obtained results in this real-world geotechnical engineering field reveal the feasibility of the proposed hybrid algorithm model,illustrating its power and superiority in terms of computational efficiency,accuracy,stability,and robustness.More critically,by observing data in real time on daily basis,the structural safety associated with metro tunnels could be supervised,which enables decision-makers to take concrete control and protection measures.展开更多
基金supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)and the Ministry of Trade,Industry&Energy,Republic of Korea (RS-2024-00441420RS-2024-00442817).
文摘Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using different technologies.Tall buildings are more susceptible to vibrations such as wind and earthquakes.Therefore,vibration control has become an important issue in civil engineering.This study optimizes tuned mass damper inerter(TMDI)using far-fault ground motion records.This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm.Structure displacement and total acceleration against earthquake load are analyzed to assess the performance of the TMDI system.The effect of the inerter when connected to different floors is observed,and the results are compared to the conventional tuned mass damper(TMD).It is indicated that the case of connecting the inerter force to the 5th floor gives better results.As a result,TMD and TMDI systems reduce the displacement by 21.87%and 25.45%,respectively,and the total acceleration by 25.45%and 19.59%,respectively.These percentage reductions indicated that the structure resilience against dynamic loads can be increased using control systems.
基金supported by the National Key R&D Program of China (No.2021YFC2801202)the National Natural Science Foundation of China (No.42076224)the Fundamental Research Funds for the Central Universities (No.202262012)。
文摘The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement.
基金supported by the Natural Science Foundation of China (U22A20214)。
文摘Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively.
基金supported by the National Natural Science Foundation of China (7060103570801062)
文摘A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.
基金The Science Foundation of Shanxi Province,China(2020JQ-481,2021JM-224)Aero Science Foundation of China(201951096002).
文摘The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence speed and difficulty in jumping out of the local optimum.In order to overcome these shortcomings,a chaotic sparrow search algorithm based on logarithmic spiral strategy and adaptive step strategy(CLSSA)is proposed in this paper.Firstly,in order to balance the exploration and exploitation ability of the algorithm,chaotic mapping is introduced to adjust the main parameters of SSA.Secondly,in order to improve the diversity of the population and enhance the search of the surrounding space,the logarithmic spiral strategy is introduced to improve the sparrow search mechanism.Finally,the adaptive step strategy is introduced to better control the process of algorithm exploitation and exploration.The best chaotic map is determined by different test functions,and the CLSSA with the best chaotic map is applied to solve 23 benchmark functions and 3 classical engineering problems.The simulation results show that the iterative map is the best chaotic map,and CLSSA is efficient and useful for engineering problems,which is better than all comparison algorithms.
基金supported by the National Natural Science Foundation of China(61271250)
文摘The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.
基金funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)through Research Partnership Program No.RP-21-07-09.
文摘Cloud computing environments,characterized by dynamic scaling,distributed architectures,and complex work-loads,are increasingly targeted by malicious actors.These threats encompass unauthorized access,data breaches,denial-of-service attacks,and evolving malware variants.Traditional security solutions often struggle with the dynamic nature of cloud environments,highlighting the need for robust Adaptive Cloud Intrusion Detection Systems(CIDS).Existing adaptive CIDS solutions,while offering improved detection capabilities,often face limitations such as reliance on approximations for change point detection,hindering their precision in identifying anomalies.This can lead to missed attacks or an abundance of false alarms,impacting overall security effectiveness.To address these challenges,we propose ACIDS(Adaptive Cloud Intrusion Detection System)-PELT.This novel Adaptive CIDS framework leverages the Pruned Exact Linear Time(PELT)algorithm and a Support Vector Machine(SVM)for enhanced accuracy and efficiency.ACIDS-PELT comprises four key components:(1)Feature Selection:Utilizing a hybrid harmony search algorithm and the symmetrical uncertainty filter(HSO-SU)to identify the most relevant features that effectively differentiate between normal and anomalous network traffic in the cloud environment.(2)Surveillance:Employing the PELT algorithm to detect change points within the network traffic data,enabling the identification of anomalies and potential security threats with improved precision compared to existing approaches.(3)Training Set:Labeled network traffic data forms the training set used to train the SVM classifier to distinguish between normal and anomalous behaviour patterns.(4)Testing Set:The testing set evaluates ACIDS-PELT’s performance by measuring its accuracy,precision,and recall in detecting security threats within the cloud environment.We evaluate the performance of ACIDS-PELT using the NSL-KDD benchmark dataset.The results demonstrate that ACIDS-PELT outperforms existing cloud intrusion detection techniques in terms of accuracy,precision,and recall.This superiority stems from ACIDS-PELT’s ability to overcome limitations associated with approximation and imprecision in change point detection while offering a more accurate and precise approach to detecting security threats in dynamic cloud environments.
基金Supported by the National Natural Science Foundation of China(No.61401407)
文摘Due to more tag-collisions result in failed transmissions,tag anti-collision is a very vital issue in the radio frequency identification(RFID) system.However,so far decreases in communication time and increases in throughput are very limited.In order to solve these problems,this paper presents a novel tag anti-collision scheme,namely adaptive hybrid search tree(AHST),by combining two algorithms of the adaptive binary-tree disassembly(ABD) and the combination query tree(CQT),in which ABD has superior tag identification velocity and CQT has optimum performance in system throughput and search timeslots.From the theoretical analysis and numerical simulations,the proposed algorithm can colligate the advantages of above algorithms,improve the system throughput and reduce the searching timeslots dramatically.
基金supported partly by the National Science and Technology Major Project of China(Grant No.2016ZX05025-001006)Major Science and Technology Project of CNPC(Grant No.ZD2019-183-007)
文摘Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development.
基金Project of Key Science and Technology of the Henan Province (No.202102310259)Henan Province University Scientific and Technological Innovation Team (No.18IRTSTHN009).
文摘The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems.
文摘Finding the optimal algorithm between an efficient encoding process and therate distortion is the main research in fractal image compression theory. A new method has beenproposed based on the optimization of the Least-Square Error and the orthogonal projection. A largenumber of domain blocks can be eliminated in order to speed-up fractal image compression. Moreover,since the rate-distortion performance of most fractal image coders is not satisfactory, an efficientbit allocation algorithm to improve the rate distortion is also proposed. The implementation andcomparison have been done with the feature extraction method to prove the efficiency of the proposedmethod.
基金funded by the NationalKey Research and Development Program of China under Grant No.11974373.
文摘The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter strategy and a parallel communication strategy are proposed to further improve the Cuckoo Search(CS)algorithm.This strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s ability to jump out of the local optimal.This paper compares the optimization performance of Parallel Adaptive Cuckoo Search(PACS)with CS,Parallel Cuckoo Search(PCS),Particle Swarm Optimization(PSO),Sine Cosine Algorithm(SCA),Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Differential Evolution(DE)and Artificial Bee Colony(ABC)algorithms by using the CEC-2013 test function.The results show that PACS algorithmoutperforms other algorithms in 20 of 28 test functions.Due to the superior performance of PACS algorithm,this paper uses it to solve the problem of the rectangular layout.Experimental results show that this scheme has a significant effect,and the material utilization rate is improved from89.5%to 97.8%after optimization.
基金supported by the National Science Council under Grant No. NSC98-2221-E-468-017 and NSC 100-2221-E-468-023the Research Project of Asia University under Grant No. 100-A-04
文摘In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation.
文摘A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications.
文摘This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines of a specific car factory considered as a case study are balanced by the ACS to optimize their energy resource management. The workload variance of the line is performed as the objective function to be minimized in order to increase the productivity. In this work, the ACS is used to address the number of tasks assigned for each workstation, while the sequence of tasks is assigned by factory. Three real-world assembly line balancing (ALB) problems from a specific car factory are tested. Results obtained by the ACS are compared with those obtained by the genetic algorithm (GA), tabu search (TS) and current search (CS). As results, the ACS outperforms other algorithms. By using the ACS, the productivity can be increased and the energy consumption of the lines can be decreased significantly.
基金supported by national natural science foundation of China(No.41274127,41301460,40874066,and 40839905)
文摘We designed the window function of the optimal Gabor transform based on the time-frequency rotation property of the fractional Fourier transform. Thus, we obtained the adaptive optimal Gabor transform in the fractional domain and improved the time-frequency concentration of the Gabor transform. The algorithm first searches for the optimal rotation factor, then performs the p-th FrFT of the signal and, finally, performs time and frequency analysis of the FrFT result. Finally, the algorithm rotates the plane in the fractional domain back to the normal time-frequency plane. This promotes the application of FrFT in the field of high-resolution reservoir prediction. Additionally, we proposed an adaptive search method for the optimal rotation factor using the Parseval principle in the fractional domain, which simplifies the algorithm. We carried out spectrum decomposition of the seismic signal, which showed that the instantaneous frequency slices obtained by the proposed algorithm are superior to the ones obtained by the traditional Gabor transform. The adaptive time frequency analysis is of great significance to seismic signal processing.
文摘When the Grover’s algorithm is applied to search an unordered database, the successful probability usually decreases with the increase of marked items. In order to solve this problem, an adaptive phase matching is proposed. With application of the new phase matching, when the fraction of marked items is greater , the successful probability is equal to 1 with at most two Grover iterations. The validity of the new phase matching is verified by a search example.
文摘Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put forward by analyzing the interrelating concept and research. The model takes the adaptive process as a multi-stage decision making problem. The 2-phases method is presented to calculate the model, which obtains the related parameters by running the colored Petri net (CPN) model of AOC2R and then searches for the result by ant colony optimization (ACO) algorithm integrated with genetic optimization techniques. The simulation results demonstrate that the proposed algorithm greatly improves the performance of AOC2R.
基金supported by the Aviation Science Funds of China(2010ZC13012)the Fund of Jiangsu Innovation Program for Graduate Education (CXLX11 0203)
文摘There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.
基金supported by the National Natural Science Foundation of China(Grant No.52125803).
文摘A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent deep excavations in soft ground.The novelty is that the modified SSA proposes adaptive adjustment strategy to create a balance between the capacity of exploitation and exploration.In AM-SSA,firstly,the population is initialized by cat mapping chaotic sequences to improve the ergodicity and randomness of the individual sparrow,enhancing the global search ability.Then the individuals are adjusted by Tent chaotic disturbance and Cauchy mutation to avoid the population being too concentrated or scattered,expanding the local search ability.Finally,the adaptive producer-scrounger number adjustment formula is introduced to balance the ability to seek the global and local optimal.In addition,it leads to the improved algorithm achieving a better accuracy level and convergence speed compared with the original SSA.To demonstrate the effectiveness and reliability of AM-SSA,23 classical benchmark functions and 25 IEEE Congress on Evolutionary Computation benchmark test functions(CEC2005),are employed as the numerical examples and investigated in comparison with some wellknown optimization algorithms.The statistical results indicate the promising performance of AM-SSA in a variety of optimization with constrained and unknown search spaces.By utilizing the AdaBoost algorithm,multiple sets of weak AMSSA-Elman predictor functions are restructured into one strong predictor by successive iterations for the tunnel deformation prediction output.Additionally,the on-site monitoring data acquired from a deep excavation project in Ningbo,China,were selected as the training and testing sample.Meanwhile,the predictive outcomes are compared with those of other different optimization and machine learning techniques.In the end,the obtained results in this real-world geotechnical engineering field reveal the feasibility of the proposed hybrid algorithm model,illustrating its power and superiority in terms of computational efficiency,accuracy,stability,and robustness.More critically,by observing data in real time on daily basis,the structural safety associated with metro tunnels could be supervised,which enables decision-makers to take concrete control and protection measures.