In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average varianc...In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average variance with adaptive l1 penalty. Implementation algorithm is given. Under some regular conditions, we demonstrate the oracle properties of aLASSO procedure for PLSIM. Simulations are used to investigate the effectiveness of the proposed method for variable selection of PLSIM.展开更多
首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对...首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对节点自适应传感半径调整算法进行了模拟实验和分析。仿真结果表明,AASR能够有效提高节点生存时间,减少能量消耗,提高覆盖率。展开更多
文摘In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average variance with adaptive l1 penalty. Implementation algorithm is given. Under some regular conditions, we demonstrate the oracle properties of aLASSO procedure for PLSIM. Simulations are used to investigate the effectiveness of the proposed method for variable selection of PLSIM.
文摘首先,设计了节点自适应传感半径调整算法(AASR,adaptive adjustment of sensing radius),通过节点自适应选择最佳的覆盖范围,有效地进行节点覆盖控制,减少节点能量虚耗,提高覆盖效率。其次,从调整效果、能量消耗和覆盖冗余度3个方面对节点自适应传感半径调整算法进行了模拟实验和分析。仿真结果表明,AASR能够有效提高节点生存时间,减少能量消耗,提高覆盖率。