This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian mod...This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.展开更多
Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two line...Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.展开更多
In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions ...In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.展开更多
Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,ca...Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.展开更多
The current morphological wavelet technologies utilize a fixed filter or a linear decomposition algorithm, which cannot cope with the sudden changes, such as impulses or edges in a signal effectively. This paper pre- ...The current morphological wavelet technologies utilize a fixed filter or a linear decomposition algorithm, which cannot cope with the sudden changes, such as impulses or edges in a signal effectively. This paper pre- sents a novel signal processing scheme, adaptive morpho- logical update lifting wavelet (AMULW), for rolling element bearing fault detection. In contrast with the widely used morphological wavelet, the filters in AMULW are no longer fixed. Instead, the AMULW adaptively uses a morphological dilation-erosion filter or an average filter as the update lifting filter to modify the approximation signal. Moreover, the nonlinear morphological filter is utilized to substitute the traditional linear filter in AMULW. The effectiveness of the proposed AMULW is evaluated using a simulated vibration signal and experimental vibration sig- nals collected from a bearing test rig. Results show that the proposed method has a superior performance in extracting fault features of defective roiling element bearings.展开更多
A method of woven fabric defect detection using the wavelet transform adaptive to the fabric has been developed. With reference to the orthogonality constrains of Daubechies wavelet, by taking the mmimization of the e...A method of woven fabric defect detection using the wavelet transform adaptive to the fabric has been developed. With reference to the orthogonality constrains of Daubechies wavelet, by taking the mmimization of the energy or the gray level of the pixels in the output sub-images as the additional conditions and using the random algorithm method, two sets of wavelet filters adapted to the fabric texture were formed. The original images of normal fabric texture and the fabric texture with defects were decomposed into horizontal and vertical sub- images by using these filters and the feature indices of these sub-images were also extracted. By comparing the feature indices of the normal texture with that of the defective texture, the fabric defects can be successfully detected and located.展开更多
Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of...Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of green tide is presented from Landsat TM/ETM plus image which needs not the atmospheric correction. In order to achieve an automatic detection of green tide, a linear relationship(y =0.723 x+0.504) between detection threshold y and subtraction x(x=λnir–λred) is found from the comparing Landsat TM/ETM plus image with the field surveys.Using this relationship, green tide patches can be detected automatically from Landsat TM/ETM plus image.Considering there is brightness difference between different regions in an image, the image will be divided into a plurality of windows(sub-images) with a same size firstly, and then each window will be detected using an adaptive detection threshold determined according to the discovered linear relationship. It is found that big errors will appear in some windows, such as those covered by clouds seriously. To solve this problem, the moving step k of windows is proposed to be less than the window width n. Using this mechanism, most pixels will be detected[n/k]×[n/k] times except the boundary pixels, then every pixel will be assigned the final class(green tide or sea water) according to majority rule voting strategy. It can be seen from the experiments, the proposed detection method using multi-windows and their adaptive thresholds can detect green tide from Landsat TM/ETM plus image automatically. Meanwhile, it avoids the reliance on the accurate atmospheric correction.展开更多
As a primary defense technique, intrusion detection becomes more and more significant since the security of the networks is one of the most critical issues in the world. We present an adaptive collaboration intrusion ...As a primary defense technique, intrusion detection becomes more and more significant since the security of the networks is one of the most critical issues in the world. We present an adaptive collaboration intrusion detection method to improve the safety of a network. A self-adaptive and collaborative intrusion detection model is built by applying the Environmentsclasses, agents, roles, groups, and objects(E-CARGO) model. The objects, roles, agents, and groups are designed by using decision trees(DTs) and support vector machines(SVMs), and adaptive scheduling mechanisms are set up. The KDD CUP 1999 data set is used to verify the effectiveness of the method. The experimental results demonstrate the feasibility and efficiency of the proposed collaborative and adaptive intrusion detection method. Also, the proposed method is shown to be more predominant than the methods that use a set of single type support vector machine(SVM) in terms of detection precision rate and recall rate.展开更多
In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation ...In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation underlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physically and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect.The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method.展开更多
Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreg...Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background.展开更多
Low Resolution Thermal Array Sensors are widely used in several applications in indoor environments. In particular, one of these cheap, small and unobtrusive sensors provides a low-resolution thermal image of the envi...Low Resolution Thermal Array Sensors are widely used in several applications in indoor environments. In particular, one of these cheap, small and unobtrusive sensors provides a low-resolution thermal image of the environment and, unlike cameras;it is capable to detect human heat emission even in dark rooms. The obtained thermal data can be used to monitor older seniors while they are performing daily activities at home, to detect critical situations such as falls. Most of the studies in activity recognition using Thermal Array Sensors require human detection techniques to recognize humans passing in the sensor field of view. This paper aims to improve the accuracy of the algorithms used so far by considering the temperature environment variation. This method leverages an adaptive background estimation and a noise removal technique based on Kalman Filter. In order to properly validate the system, a novel installation of a single sensor has been implemented in a smart environment: the obtained results show an improvement in human detection accuracy with respect to the state of the art, especially in case of disturbed environments.展开更多
An adaptive endpoint detection algorithm based on band energy and adaptive smoothing algorithm is described. This algorithm utilizes the capability of adaptive smoothing algorithm that intensifies the discontinuity be...An adaptive endpoint detection algorithm based on band energy and adaptive smoothing algorithm is described. This algorithm utilizes the capability of adaptive smoothing algorithm that intensifies the discontinuity between local areas. The band energy features are selected because of their usefulness in detecting high energy regions (in the incoming signal) and making the distinction between speech and noise. Heuristic 'edge-focusing' is used to endpoint detection to save the time in iteration.展开更多
The detection performance and the constant false alarm rate behavior of the conventional adaptive detectors are severely degraded in heterogeneous clutter. This paper designs and analyses a knowledge-based (KB) adap...The detection performance and the constant false alarm rate behavior of the conventional adaptive detectors are severely degraded in heterogeneous clutter. This paper designs and analyses a knowledge-based (KB) adaptive polarimetric detector in het-erogeneous clutter. The proposed detection scheme is composed of a data selector using polarization knowledge and an adaptive polarization detector using training data. A polarization data selector based on the maximum likelihood estimation is proposed to remove outliers from the heterogeneous training data. This selector can remove outliers effectively, thus the training data is purified for estimating the clutter covariance matrix. Consequently, the performance of the adaptive detector is improved. We assess the performance of the KB adaptive polarimetric detector and the adaptive polarimetric detector without a data selector using simulated data and IPIX radar data. The results show that the KB adaptive polarization detector outperforms its non-KB counterparts.展开更多
The problem of adaptive detection in the situation of signal mismatch is considered; that is, the actual signal steering vector is not aligned with the nominal one. Two novel tunable detectors are proposed. They can c...The problem of adaptive detection in the situation of signal mismatch is considered; that is, the actual signal steering vector is not aligned with the nominal one. Two novel tunable detectors are proposed. They can control the degree to which the mismatched signals are rejected. Remarkably, it is found that they both cover existing famous detectors as their special cases. More importantly, they possess the constant false alarm rate(CFAR)property and achieve enhanced mismatched signal rejection or improved robustness than their natural competitors. Besides, they can provide slightly better matched signals detection performance than the existing detectors.展开更多
An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision,...An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision, using a multilevel search scheme, the coarse matching is processed in typical disparity space image, while the fine matching is processed in disparity-offset space image. In the upper level, GCPs are obtained by enhanced volumetric iterative algorithm enforcing the mutual constraint and the threshold constraint. Under the supervision of the highly reliable GCPs, bidirectional dynamic programming framework is employed to solve the inconsistency in the optimization path. In the lower level, to reduce running time, disparity-offset space is proposed to efficiently achieve the dense disparity image. In addition, an adaptive dual support-weight strategy is presented to aggregate matching cost, which considers photometric and geometric information. Further, post-processing algorithm can ameliorate disparity results in areas with depth discontinuities and related by occlusions using dual threshold algorithm, where missing stereo information is substituted from surrounding regions. To demonstrate the effectiveness of the algorithm, we present the two groups of experimental results for four widely used standard stereo data sets, including discussion on performance and comparison with other methods, which show that the algorithm has not only a fast speed, but also significantly improves the efficiency of holistic optimization.展开更多
Aimed at the problem of the end effect when using empirical mode decomposition(EMD),a method for constraining the end effect of EMD is proposed based on sequential similarity detection and adaptive filter.The method d...Aimed at the problem of the end effect when using empirical mode decomposition(EMD),a method for constraining the end effect of EMD is proposed based on sequential similarity detection and adaptive filter.The method divides the signal into many wavelets,and it changes the initial wavelet length to select the best initial wavelet that has the minimum error and maximum number of matching seed wavelets,and the wavelet slopes are used for pre-matching and secondary matching to speed up the matching speed.Then,folded self-adaptive threshold is used to select multiple seed wavelets,and finally the end waveform is predicted and expanded according to the adaptive filter method.The proposed method is used to analyze the non-stationary nonlinear simulation signal and experimental signal,and it is compared with the mirror extension and RBF extension methods.The orthogonality index and similarity index of the EMD results of the extended signal after the proposed method are better than those of the other methods.The results show that the proposed method can better constrain the end effect,and has certain validity,accuracy and stability in solving the end effect problem.展开更多
Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechani...Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.展开更多
The wavelet transform-based adaptive multiuser detection algorithm is presented. The novel adaptive multiuser detection algorithm uses the wavelet transform for the preprocessing, and wavelet-transformed signal uses L...The wavelet transform-based adaptive multiuser detection algorithm is presented. The novel adaptive multiuser detection algorithm uses the wavelet transform for the preprocessing, and wavelet-transformed signal uses LMS algorithm to implement the adaptive multiuser detection. The algorithm makes use of wavelet transform to divide the wavelet space, which shows that the wavelet transform has a better decorrelation ability and leads to better convergence. White noise can be wiped off under the wavelet transform according to different characteristics of signal and white noise under the wavelet transform. Theoretical analyses and simulations demonstrate that the algorithm converges faster than the conventional adaptive multiuser detection algorithm, and has the better performance. Simulation results reveal that the algorithm convergence relates to the wavelet base, and show that the algorithm convergence gets better with the increasing of regularity for the same series of the wavelet base. Finally the algorithm shows that it can be easily implemented.展开更多
Edge detection is an effective method for image segmentation and feature extraction.Therefore,extracting weak edges with the inhomogeneous gray of Corona Virus Disease 2019(COVID-19)CT images is extremely important.Mu...Edge detection is an effective method for image segmentation and feature extraction.Therefore,extracting weak edges with the inhomogeneous gray of Corona Virus Disease 2019(COVID-19)CT images is extremely important.Multiscale morphology has been widely used in the edge detection of medical images due to its excellent boundary detection accuracy.In this paper,we propose a weak edge detection method based on Gaussian filtering and singlescale Retinex(GF_SSR),and improved multiscale morphology and adaptive threshold binarization(IMSM_ATB).As all the CT images have noise,we propose to remove image noise by Gaussian filtering.The edge of CT images is enhanced using the SSR algorithm.In addition,based on the extracted edge of CT images using improved Multiscale morphology,a particle swarm optimization(PSO)algorithm is introduced to binarize the image by automatically getting the optimal threshold.To evaluate our method,we use images from three datasets,namely COVID-19,Kaggle-COVID-19,and COVID-Chestxray,respectively.The average values of results are worthy of reference,with the Shannon information entropy of 1.8539,the Precision of 0.9992,the Recall of 0.8224,the F-Score of 1.9158,running time of 11.3000.Finally,three types of lesion images in the COVID-19 dataset are selected to evaluate the visual effects of the proposed algorithm.Compared with the other four algorithms,the proposed algorithm effectively detects the weak edge of the lesion and provides help for image segmentation and feature extraction.展开更多
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
基金supported by the National Natural Science Foundation of China(62371382,62071346)the Science,Technology&Innovation Project of Xiong’an New Area(2022XAGG0181)the Special Funds for Creative Research(2022C61540)。
文摘This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.
基金supported by the National Natural Science Foundation of China(61971432)Taishan Scholar Project of Shandong Province(tsqn201909156)the Outstanding Youth Innovation Team Program of University in Shandong Province(2019KJN031)。
文摘Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.
基金The National Natural Science Foundation of China (No.61172135,61101198)the Aeronautical Foundation of China (No.20115152026)
文摘In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.
基金supported by the National Natural Science Foundation of China (No.61971412)。
文摘Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.
基金Supported by National Natural Science Foundation of China(51705431,51375078)Natural Sciences and Engineering Research Council of Canada(RGPIN-2015-04897)
文摘The current morphological wavelet technologies utilize a fixed filter or a linear decomposition algorithm, which cannot cope with the sudden changes, such as impulses or edges in a signal effectively. This paper pre- sents a novel signal processing scheme, adaptive morpho- logical update lifting wavelet (AMULW), for rolling element bearing fault detection. In contrast with the widely used morphological wavelet, the filters in AMULW are no longer fixed. Instead, the AMULW adaptively uses a morphological dilation-erosion filter or an average filter as the update lifting filter to modify the approximation signal. Moreover, the nonlinear morphological filter is utilized to substitute the traditional linear filter in AMULW. The effectiveness of the proposed AMULW is evaluated using a simulated vibration signal and experimental vibration sig- nals collected from a bearing test rig. Results show that the proposed method has a superior performance in extracting fault features of defective roiling element bearings.
基金This research was supported by the Research Fund for the Doctoral Program of Higher Education, No.99025508
文摘A method of woven fabric defect detection using the wavelet transform adaptive to the fabric has been developed. With reference to the orthogonality constrains of Daubechies wavelet, by taking the mmimization of the energy or the gray level of the pixels in the output sub-images as the additional conditions and using the random algorithm method, two sets of wavelet filters adapted to the fabric texture were formed. The original images of normal fabric texture and the fabric texture with defects were decomposed into horizontal and vertical sub- images by using these filters and the feature indices of these sub-images were also extracted. By comparing the feature indices of the normal texture with that of the defective texture, the fabric defects can be successfully detected and located.
基金The National Natural Science Foundation of China under contract Nos 41506198 and 41476101the Natural Science Foundation Projects of Shandong Province of China under contract No.ZR2012FZ003the Science and Technology Development Plan of Qingdao City of China under contract No.13-1-4-121-jch
文摘Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of green tide is presented from Landsat TM/ETM plus image which needs not the atmospheric correction. In order to achieve an automatic detection of green tide, a linear relationship(y =0.723 x+0.504) between detection threshold y and subtraction x(x=λnir–λred) is found from the comparing Landsat TM/ETM plus image with the field surveys.Using this relationship, green tide patches can be detected automatically from Landsat TM/ETM plus image.Considering there is brightness difference between different regions in an image, the image will be divided into a plurality of windows(sub-images) with a same size firstly, and then each window will be detected using an adaptive detection threshold determined according to the discovered linear relationship. It is found that big errors will appear in some windows, such as those covered by clouds seriously. To solve this problem, the moving step k of windows is proposed to be less than the window width n. Using this mechanism, most pixels will be detected[n/k]×[n/k] times except the boundary pixels, then every pixel will be assigned the final class(green tide or sea water) according to majority rule voting strategy. It can be seen from the experiments, the proposed detection method using multi-windows and their adaptive thresholds can detect green tide from Landsat TM/ETM plus image automatically. Meanwhile, it avoids the reliance on the accurate atmospheric correction.
基金supported in part by the National Natural Science Foundation of China(61772141,61673123)Guangdong Provincial Science&Technology Project(2015B090901016,2016B010108007)+1 种基金Guangdong Education Department Project(Guangdong Higher Education letter 2015[133])the Guangzhou Science&Technology Project(201508010067,201604020145201604046017,and 2016201604030034)
文摘As a primary defense technique, intrusion detection becomes more and more significant since the security of the networks is one of the most critical issues in the world. We present an adaptive collaboration intrusion detection method to improve the safety of a network. A self-adaptive and collaborative intrusion detection model is built by applying the Environmentsclasses, agents, roles, groups, and objects(E-CARGO) model. The objects, roles, agents, and groups are designed by using decision trees(DTs) and support vector machines(SVMs), and adaptive scheduling mechanisms are set up. The KDD CUP 1999 data set is used to verify the effectiveness of the method. The experimental results demonstrate the feasibility and efficiency of the proposed collaborative and adaptive intrusion detection method. Also, the proposed method is shown to be more predominant than the methods that use a set of single type support vector machine(SVM) in terms of detection precision rate and recall rate.
基金Support by the National Natural Science Foundation of China(61174114)the Research Fund for the Doctoral Program of Higher Education in China(20120101130016)Zhejiang Provincial Science and Technology Planning Projects of China(2014C31019)
文摘In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation underlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physically and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect.The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method.
基金Project(61701060)supported by the National Natural Science Foundation of China。
文摘Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background.
文摘Low Resolution Thermal Array Sensors are widely used in several applications in indoor environments. In particular, one of these cheap, small and unobtrusive sensors provides a low-resolution thermal image of the environment and, unlike cameras;it is capable to detect human heat emission even in dark rooms. The obtained thermal data can be used to monitor older seniors while they are performing daily activities at home, to detect critical situations such as falls. Most of the studies in activity recognition using Thermal Array Sensors require human detection techniques to recognize humans passing in the sensor field of view. This paper aims to improve the accuracy of the algorithms used so far by considering the temperature environment variation. This method leverages an adaptive background estimation and a noise removal technique based on Kalman Filter. In order to properly validate the system, a novel installation of a single sensor has been implemented in a smart environment: the obtained results show an improvement in human detection accuracy with respect to the state of the art, especially in case of disturbed environments.
文摘An adaptive endpoint detection algorithm based on band energy and adaptive smoothing algorithm is described. This algorithm utilizes the capability of adaptive smoothing algorithm that intensifies the discontinuity between local areas. The band energy features are selected because of their usefulness in detecting high energy regions (in the incoming signal) and making the distinction between speech and noise. Heuristic 'edge-focusing' is used to endpoint detection to save the time in iteration.
基金supported by the National Natural Science Foundation of China(61371181)the Shandong Provincial Natural Science Foundation(ZR2012FQ007)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF.2011118)
文摘The detection performance and the constant false alarm rate behavior of the conventional adaptive detectors are severely degraded in heterogeneous clutter. This paper designs and analyses a knowledge-based (KB) adaptive polarimetric detector in het-erogeneous clutter. The proposed detection scheme is composed of a data selector using polarization knowledge and an adaptive polarization detector using training data. A polarization data selector based on the maximum likelihood estimation is proposed to remove outliers from the heterogeneous training data. This selector can remove outliers effectively, thus the training data is purified for estimating the clutter covariance matrix. Consequently, the performance of the adaptive detector is improved. We assess the performance of the KB adaptive polarimetric detector and the adaptive polarimetric detector without a data selector using simulated data and IPIX radar data. The results show that the KB adaptive polarization detector outperforms its non-KB counterparts.
基金supported by the National Natural Science Foundation of China(6110216960925005)
文摘The problem of adaptive detection in the situation of signal mismatch is considered; that is, the actual signal steering vector is not aligned with the nominal one. Two novel tunable detectors are proposed. They can control the degree to which the mismatched signals are rejected. Remarkably, it is found that they both cover existing famous detectors as their special cases. More importantly, they possess the constant false alarm rate(CFAR)property and achieve enhanced mismatched signal rejection or improved robustness than their natural competitors. Besides, they can provide slightly better matched signals detection performance than the existing detectors.
基金supported by the National Natural Science Foundation of China (No.60605023,60775048)Specialized Research Fund for the Doctoral Program of Higher Education (No.20060141006)
文摘An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision, using a multilevel search scheme, the coarse matching is processed in typical disparity space image, while the fine matching is processed in disparity-offset space image. In the upper level, GCPs are obtained by enhanced volumetric iterative algorithm enforcing the mutual constraint and the threshold constraint. Under the supervision of the highly reliable GCPs, bidirectional dynamic programming framework is employed to solve the inconsistency in the optimization path. In the lower level, to reduce running time, disparity-offset space is proposed to efficiently achieve the dense disparity image. In addition, an adaptive dual support-weight strategy is presented to aggregate matching cost, which considers photometric and geometric information. Further, post-processing algorithm can ameliorate disparity results in areas with depth discontinuities and related by occlusions using dual threshold algorithm, where missing stereo information is substituted from surrounding regions. To demonstrate the effectiveness of the algorithm, we present the two groups of experimental results for four widely used standard stereo data sets, including discussion on performance and comparison with other methods, which show that the algorithm has not only a fast speed, but also significantly improves the efficiency of holistic optimization.
基金The National Natural Science Foundation of China(No.51675100).
文摘Aimed at the problem of the end effect when using empirical mode decomposition(EMD),a method for constraining the end effect of EMD is proposed based on sequential similarity detection and adaptive filter.The method divides the signal into many wavelets,and it changes the initial wavelet length to select the best initial wavelet that has the minimum error and maximum number of matching seed wavelets,and the wavelet slopes are used for pre-matching and secondary matching to speed up the matching speed.Then,folded self-adaptive threshold is used to select multiple seed wavelets,and finally the end waveform is predicted and expanded according to the adaptive filter method.The proposed method is used to analyze the non-stationary nonlinear simulation signal and experimental signal,and it is compared with the mirror extension and RBF extension methods.The orthogonality index and similarity index of the EMD results of the extended signal after the proposed method are better than those of the other methods.The results show that the proposed method can better constrain the end effect,and has certain validity,accuracy and stability in solving the end effect problem.
基金supported by Korea Institute for Advancement of Technology(KIAT)grant funded by theKoreaGovernment(MOTIE)(P0008703,The CompetencyDevelopment Program for Industry Specialist).
文摘Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.
文摘The wavelet transform-based adaptive multiuser detection algorithm is presented. The novel adaptive multiuser detection algorithm uses the wavelet transform for the preprocessing, and wavelet-transformed signal uses LMS algorithm to implement the adaptive multiuser detection. The algorithm makes use of wavelet transform to divide the wavelet space, which shows that the wavelet transform has a better decorrelation ability and leads to better convergence. White noise can be wiped off under the wavelet transform according to different characteristics of signal and white noise under the wavelet transform. Theoretical analyses and simulations demonstrate that the algorithm converges faster than the conventional adaptive multiuser detection algorithm, and has the better performance. Simulation results reveal that the algorithm convergence relates to the wavelet base, and show that the algorithm convergence gets better with the increasing of regularity for the same series of the wavelet base. Finally the algorithm shows that it can be easily implemented.
基金Research on the Application of MR Technology in the Teaching of Emergency Nursing Training(HBKC217154).
文摘Edge detection is an effective method for image segmentation and feature extraction.Therefore,extracting weak edges with the inhomogeneous gray of Corona Virus Disease 2019(COVID-19)CT images is extremely important.Multiscale morphology has been widely used in the edge detection of medical images due to its excellent boundary detection accuracy.In this paper,we propose a weak edge detection method based on Gaussian filtering and singlescale Retinex(GF_SSR),and improved multiscale morphology and adaptive threshold binarization(IMSM_ATB).As all the CT images have noise,we propose to remove image noise by Gaussian filtering.The edge of CT images is enhanced using the SSR algorithm.In addition,based on the extracted edge of CT images using improved Multiscale morphology,a particle swarm optimization(PSO)algorithm is introduced to binarize the image by automatically getting the optimal threshold.To evaluate our method,we use images from three datasets,namely COVID-19,Kaggle-COVID-19,and COVID-Chestxray,respectively.The average values of results are worthy of reference,with the Shannon information entropy of 1.8539,the Precision of 0.9992,the Recall of 0.8224,the F-Score of 1.9158,running time of 11.3000.Finally,three types of lesion images in the COVID-19 dataset are selected to evaluate the visual effects of the proposed algorithm.Compared with the other four algorithms,the proposed algorithm effectively detects the weak edge of the lesion and provides help for image segmentation and feature extraction.