期刊文献+
共找到554篇文章
< 1 2 28 >
每页显示 20 50 100
A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model 被引量:6
1
作者 ZHANG Zeguo YIN Jianchuan +2 位作者 WANG Nini HU Jiangqiang WANG Ning 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期94-105,共12页
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat... An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability. 展开更多
关键词 tidal level prediction harmonious analysis method adaptive network-based fuzzy inference system correlation analysis
下载PDF
Bottleneck Prediction Method Based on Improved Adaptive Network-based Fuzzy Inference System (ANFIS) in Semiconductor Manufacturing System 被引量:4
2
作者 曹政才 邓积杰 +1 位作者 刘民 王永吉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1081-1088,共8页
Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semicon... Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method. 展开更多
关键词 semiconductor manufacturing system bottleneck prediction adaptive network-based fuzzy inference system
下载PDF
Study of impact from the genetic algorithm combined adaptive network-based fuzzy inference system model on business performance
3
作者 HUANG Jui-Ching PAN Wen-Tsao 《通讯和计算机(中英文版)》 2008年第10期52-57,共6页
关键词 遗传算法 计算方法 模糊系统 网络 电子商务
下载PDF
An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance
4
作者 N.Kanagaraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3213-3226,共14页
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant... The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria. 展开更多
关键词 adaptive neuro-fuzzy inference system(ANFIS) fuzzy logic controller fractional order control PID controller first order time delay system
下载PDF
APPLICATION STUDY ON ADAPTIVE NEURAL FUZZY INFERENCE MODEL IN COMPLEX SOCIAL-TECHNICAL SYSTEM
5
作者 冯绍红 李东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第4期393-399,共7页
The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re... The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields. 展开更多
关键词 complex adaptive system adaptive neural fuzzy inference system (ANFIS) complex social-technical system organizational efficiency
下载PDF
Experimental investigation and adaptive neural fuzzy inference system prediction of copper recovery from flotation tailings by acid leaching in a batch agitated tank 被引量:3
6
作者 Jalil Pazhoohan Hossein Beiki Morteza EsfANDyari 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第5期538-546,共9页
The potential of copper recovery from flotation tailings was experimentally investigated using a laboratory-mixing tank. The experiments were performed with solid weight percentages of 30 wt%, 35 wt%, 40 wt% and 45 wt... The potential of copper recovery from flotation tailings was experimentally investigated using a laboratory-mixing tank. The experiments were performed with solid weight percentages of 30 wt%, 35 wt%, 40 wt% and 45 wt% in water. The measurements revealed that adding sulfuric acid all at once to the tank rapidly increased the efficiency of the leaching process, which was attributed to the rapid change in the acid concentration. The rate of iron dissolution from tailings was less than when the acid was added gradually. The sample with 40 wt% solid is recommended as an appropriate feed for the recovery of copper. The adaptive neural fuzzy system(ANFIS) was also used to predict the copper recovery from flotation tailings. The back-propagation algorithm and least squares method were applied for the training of ANFIS. The validation data was also applied to evaluate the performance of these models. Simulation results revealed that the testing results from these models were in good agreement with the experimental data. 展开更多
关键词 FLOTATION TAILINGS LEACHING copper environments adaptive neural fuzzy inference system
下载PDF
A reversibly used cooling tower with adaptive neuro-fuzzy inference system 被引量:2
7
作者 吴加胜 张国强 +3 位作者 张泉 周晋 郭永辉 沈炜 《Journal of Central South University》 SCIE EI CAS 2012年第3期715-720,共6页
An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demons... An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT. 展开更多
关键词 reversibly used cooling tower HEATING adaptive neuro-fuzzy inference system fuzzy modeling approach
下载PDF
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
8
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
下载PDF
Detection of small bowel tumor in wireless capsule endoscopy images using an adaptive neuro-fuzzy inference system 被引量:1
9
作者 Mahdi Alizadeh Omid Haji Maghsoudi +3 位作者 Kaveh Sharzehi Hamid Reza Hemati Alireza Kamali Asl Alireza Talebpour 《The Journal of Biomedical Research》 CAS CSCD 2017年第5期419-427,共9页
Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate.The purpose of this study was to evaluate the validity and reliability of an automatic post-processing met... Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate.The purpose of this study was to evaluate the validity and reliability of an automatic post-processing method for identifying and classifying wireless capsule endoscopic images, and investigate statistical measures to differentiate normal and abnormal images. The proposed technique consists of two main stages, namely, feature extraction and classification. Primarily, 32 features incorporating four statistical measures(contrast, correlation, homogeneity and energy) calculated from co-occurrence metrics were computed. Then, mutual information was used to select features with maximal dependence on the target class and with minimal redundancy between features. Finally, a trained classifier, adaptive neuro-fuzzy interface system was implemented to classify endoscopic images into tumor, healthy and unhealthy classes. Classification accuracy of 94.2% was obtained using the proposed pipeline. Such techniques are valuable for accurate detection characterization and interpretation of endoscopic images. 展开更多
关键词 adaptive neuro-fuzzy inference system co-occurrence matrix wireless capsule endoscopy texture feature
下载PDF
Estimation of convergence of a high-speed railway tunnel in weak rocks using an adaptive neuro-fuzzy inference system(ANFIS) approach 被引量:1
10
作者 A.C.Adoko Li Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期11-18,共8页
Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement... Estimation of tunnel diameter convergence is a very important issue for tunneling construction,especially when the new Austrian tunneling method(NATM) is adopted.For this purpose,a systematic convergence measurement is usually implemented to adjust the design during the whole construction,and consequently deadly hazards can be prevented.In this study,a new fuzzy model capable of predicting the diameter convergences of a high-speed railway tunnel was developed on the basis of adaptive neuro-fuzzy inference system(ANFIS) approach.The proposed model used more than 1 000 datasets collected from two different tunnels,i.e.Daguan tunnel No.2 and Yaojia tunnel No.1,which are part of a tunnel located in Hunan Province,China.Six Takagi-Sugeno fuzzy inference systems were constructed by using subtractive clustering method.The data obtained from Daguan tunnel No.2 were used for model training,while the data from Yaojia tunnel No.1 were employed to evaluate the performance of the model.The input parameters include surrounding rock masses(SRM) rating index,ground engineering conditions(GEC) rating index,tunnel overburden(H),rock density(?),distance between monitoring station and working face(D),and elapsed time(T).The model’s performance was assessed by the variance account for(VAF),root mean square error(RMSE),mean absolute percentage error(MAPE) as well as the coefficient of determination(R2) between measured and predicted data as recommended by many researchers.The results showed excellent prediction accuracy and it was suggested that the proposed model can be used to estimate the tunnel convergence and convergence velocity. 展开更多
关键词 tunnel convergence prediction new Austrian tunneling method (NATM) adaptive neurc -fuzzy inference system(ANF1S) subtractive clustering
下载PDF
Application of the Adaptive Neuro-Fuzzy Inference System for Optimal Design of Reinforced Concrete Beams
11
作者 Jiin-Po Yeh Ren-Pei Yang 《Journal of Intelligent Learning Systems and Applications》 2014年第4期162-175,共14页
Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live l... Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live loads, compressive strength of concrete and yield strength of steel;design variables are the width and effective depth of the continuous beam and steel ratios for positive and negative moments. The constraints are built based on the ACI Building Code by considering the strength requirements of shear and the maximum positive and negative moments, the development length of flexural reinforcement, and the serviceability requirement of deflection. The objective function is to minimize the total cost of steel and concrete. The optimal data found from the genetic algorithm are divided into three groups: the training set, the checking set and the testing set for the use of the adaptive neuro-fuzzy inference system (ANFIS). The input vector of ANFIS consists of the yield strength of steel, compressive strength of concrete, dead load, span, width and effective depth of the beam;its outputs are the minimum total cost and optimal steel ratios for positive and negative moments. To make ANFIS more efficient, the technique of Subtractive Clustering is applied to group the data to help streamline the fuzzy rules. Numerical results show that the performance of ANFIS is excellent, with correlation coefficients between the three targets and outputs of the testing data being greater than 0.99. 展开更多
关键词 Continuous Reinforced Concrete BEAMS GENETIC Algorithm adaptive NEURO-fuzzy inference System Correlation COEFFICIENTS
下载PDF
Comparison between Neural Network and Adaptive Neuro-Fuzzy Inference System for Forecasting Chaotic Traffic Volumes
12
作者 Jiin-Po Yeh Yu-Chen Chang 《Journal of Intelligent Learning Systems and Applications》 2012年第4期247-254,共8页
This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the ... This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the input vector, one hidden layer and output layer. Bayesian regularization is employed to obtain the effective number of neurons in the hidden layer. The input variables and target of the adaptive neuro-fuzzy inference system are the same as those of the neural network. The data clustering technique is used to group data points so that the membership functions will be more tailored to the input data, which in turn greatly reduces the number of fuzzy rules. Numerical results indicate that these two models have almost the same accuracy, while the adaptive neuro-fuzzy inference system takes more time to train. It is also shown that although the effective number of neurons in the hidden layer is less than half the number of the input elements, the neural network can have satisfactory performance. 展开更多
关键词 NEURAL Network adaptive NEURO-fuzzy inference System CHAOTIC TRAFFIC VOLUMES State Space Reconstruction
下载PDF
Sleep Apnea Detection Using Adaptive Neuro Fuzzy Inference System
13
作者 Cafer Avci Gokhan Bilgin 《Engineering(科研)》 2013年第10期259-263,共5页
This paper presents an efficient and easy implemented method for detecting minute based analysis of sleep apnea. The nasal, chest and abdominal based respiratory signals extracted from polysomnography recordings are o... This paper presents an efficient and easy implemented method for detecting minute based analysis of sleep apnea. The nasal, chest and abdominal based respiratory signals extracted from polysomnography recordings are obtained from PhysioNet apnea-ECG database. Wavelet transforms are applied on the 1-minute and 3-minute length recordings. According to the preliminary tests, the variances of 10th and 11th detail components can be used as discriminative features for apneas. The features obtained from total 8 recordings are used for training and testing of an adaptive neuro fuzzy inference system (ANFIS). Training and testing process have been repeated by using the randomly obtained five different sequences of whole data for generalization of the ANFIS. According to results, ANFIS based classification has sufficient accuracy for apnea detection considering of each type of respiratory. However, the best result is obtained by analyzing the 3-minute length nasal based respiratory signal. In this study, classification accuracies have been obtained greater than 95.2% for each of the five sequences of entire data. 展开更多
关键词 Sleep Apnea Wavelet Decomposition adaptive Neuro fuzzy inference System
下载PDF
Identification and novel adaptive fuzzy control of nonlinear system for PEMFC stack
14
作者 卫东 许宏 朱新坚 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第2期186-192,共7页
The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are t... The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are too complicated to be effectively applied to on-line control. In this paper, input-output data and operating experiences will be used to establish PEMFC stack model and operating temperature control system. An adaptive learning algorithm and a nearest-neighbor clustering algorithm are applied to regulate the parameters and fuzzy rules so that the model and the control system are able to obtain higher accuracy. In the end, the simulation and the experimental results are presented and compared with traditional PID and fuzzy control algorithms. 展开更多
关键词 proton exchange membrane fuel cell (PEMFC) adaptive neural-networks fuzzy infer system ANFIS) adaptive neural-network learning algorithm (ANA) nearest-neighbor clustering algorithm (NCA)
下载PDF
Temperature modeling and control of Direct Methanol Fuel Cell based on adaptive neural fuzzy technology
15
作者 戚志东 Zhu Xinjian Cao Guangyi 《High Technology Letters》 EI CAS 2006年第4期421-426,共6页
Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an A... Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results. 展开更多
关键词 direct methanol fuel cell (DMFC) adaptive neural fuzzy inference technology fuzzy genetic algorithms (FGA)
下载PDF
Adaptive neuro fuzzy inference system for classification of water quality status 被引量:9
16
作者 Han Yan,Zhihong Zou,Huiwen Wang School of Economics and Management,Beihang University,Beijing 100191,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第12期1891-1896,共6页
An adaptive neuro fuzzy inference system was used for classifying water quality status of river. It applied several physical and inorganic chemical indicators including dissolved oxygen, chemical oxygen demand, and am... An adaptive neuro fuzzy inference system was used for classifying water quality status of river. It applied several physical and inorganic chemical indicators including dissolved oxygen, chemical oxygen demand, and ammonia-nitrogen. A data set (nine weeks, total 845 observations) was collected from 100 monitoring stations in all major river basins in China and used for training and validating the model. Up to 89.59% of the data could be correctly classified using this model. Such performance was more competitive when compared with artificial neural networks. It is applicable in evaluation and classification of water quality status. 展开更多
关键词 adaptive neuro fuzzy inference system artificial neural networks water quality status CLASSIFICATION
原文传递
自适应神经模糊推理系统优化的快速上肢评估方法
17
作者 白仲航 项钲 +1 位作者 谭昭芸 裴卉宁 《计算机集成制造系统》 EI CSCD 北大核心 2024年第5期1643-1656,共14页
传统方法对工作相关肌肉骨骼疾病风险评估的输入变量变化敏感性较低,导致风险评估输出结果的精确性和可靠性不足。为更加准确地进行人因工程风险评估,提出了基于自适应神经模糊推理系统的快速上肢评估方法(RULA)。首先,基于卷积神经网... 传统方法对工作相关肌肉骨骼疾病风险评估的输入变量变化敏感性较低,导致风险评估输出结果的精确性和可靠性不足。为更加准确地进行人因工程风险评估,提出了基于自适应神经模糊推理系统的快速上肢评估方法(RULA)。首先,基于卷积神经网络对视频中人体工作姿势的关键点进行检测及识别,并计算关节角度;其次,基于自适应神经模糊推理系统对快速上肢评估方法进行改进,搭建工作相关肌肉骨骼疾病风险评估架构以解决评估不同姿势时获得相同评分的问题;再次,随机选取不同工作姿势的关节角度数据对网络进行训练和检测,调整基于自适应神经模糊推理系统和快速上肢评估方法的工作相关肌肉骨骼疾病风险预测模型的最佳参数;最后,选取关节角度数据集里的前15个工作姿势进行相关性验证,将结果与原始快速上肢评估方法的结果进行比较,应用树枝修剪工具的操作过程进行案例分析以实现风险得分的实时动态评估。结果表明,优化后的快速上肢评估方法比原始方法更敏感,验证了利用自适应神经模糊推理系统能够有效改进快速上肢评估方法并实时预测风险得分。 展开更多
关键词 快速上肢评估法 自适应神经模糊推理系统 模糊控制 关键点检测 人因工程风险
下载PDF
基于SFLA和MSISSA-ANFIS的超短期光伏功率动态预测方法
18
作者 李练兵 高国强 +3 位作者 陶鹏 张超 赵莎莎 陈伟光 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期326-335,共10页
为进一步提高光伏功率预测的精度,提出一种基于SFLA、MSISSA和ANFIS的超短期光伏功率日内动态预测模型。首先针对ANFIS模型受成员函数影响较大的缺点采用MSISSA对其进行优化,并结合SFLA选取相似日的方法,构建基于SFLA和MSISSA-ANFIS的... 为进一步提高光伏功率预测的精度,提出一种基于SFLA、MSISSA和ANFIS的超短期光伏功率日内动态预测模型。首先针对ANFIS模型受成员函数影响较大的缺点采用MSISSA对其进行优化,并结合SFLA选取相似日的方法,构建基于SFLA和MSISSA-ANFIS的功率预测模型。然后根据相关性较高的功率、气象特征与相似日集合构建特征向量对未来4 h的光伏功率进行预测。最后将从小型气象站获得的实时更新的未来气象数据存入数据库,每隔15 min预测一次,实现光伏功率的日内动态预测。结果表明所提方法提高了超短期光伏预测的精度。 展开更多
关键词 光伏功率预测 时间序列 自适应神经模糊推理系统 算法优化 相似日选取
下载PDF
Adaptive network fuzzy inference system based navigation controller for mobile robotAdaptive network fuzzy inference system based navigation controller for mobile robot 被引量:1
19
作者 Panati SUBBASH Kil To CHONG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第2期141-151,共11页
Autonomous navigation of a mobile robot in an unknown environment with highly cluttered obstacles is a fundamental issue in mobile robotics research. We propose an adaptive network fuzzy inference system(ANFIS) based ... Autonomous navigation of a mobile robot in an unknown environment with highly cluttered obstacles is a fundamental issue in mobile robotics research. We propose an adaptive network fuzzy inference system(ANFIS) based navigation controller for a differential drive mobile robot in an unknown environment with cluttered obstacles. Ultrasonic sensors are used to capture the environmental information around the mobile robot. A training data set required to train the ANFIS controller has been obtained by designing a fuzzy logic based navigation controller. Additive white Gaussian noise has been added to the sensor readings and fed to the trained ANFIS controller during mobile robot navigation, to account for the effect of environmental noise on sensor readings. The robustness of the proposed navigation controller has been evaluated by navigating the mobile robot in three different environments. The performance of the proposed controller has been verified by comparing the travelled path length/efficiency and bending energy obtained by the proposed method with reference mobile robot navigation controllers, such as neural network, fuzzy logic, and ANFIS. Simulation results presented in this paper show that the proposed controller has better performance compared with reference controllers and can successfully navigate in different environments without any collision with obstacles. 展开更多
关键词 adaptive network fuzzy inference system ADDITIVE WHITE GAUSSIAN noise Autonomous navigation Mobile robot
原文传递
Simulation of foamed concrete compressive strength prediction using adaptive neuro-fuzzy inference system optimized by nature-inspired algorithms 被引量:2
20
作者 Ahmad SHARAFATI H.NADERPOUR +2 位作者 Sinan Q.SALIH E.ONYARI Zaher Mundher YASEEN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第1期61-79,共19页
Concrete compressive strength prediction is an essential process for material design and sustainability.This study investigates several novel hybrid adaptive neuro-fuzzy inference system(ANFIS)evolutionary models,i.e.... Concrete compressive strength prediction is an essential process for material design and sustainability.This study investigates several novel hybrid adaptive neuro-fuzzy inference system(ANFIS)evolutionary models,i.e.,ANFIS-particle swarm optimization(PSO),ANFIS-ant colony,ANFIS-differential evolution(DE),and ANFIS-genetic algorithm to predict the foamed concrete compressive strength.Several concrete properties,including cement content(C),oven dry density(O),water-to-binder ratio(W),and foamed volume(F)are used as input variables.A relevant data set is obtained from open-access published experimental investigations and used to build predictive models.The performance of the proposed predictive models is evaluated based on the mean performance(MP),which is the mean value of several statistical error indices.To optimize each predictive model and its input variables,univariate(C,O,W,and F),bivariate(C-O,C-W,C-F,O-W,O-F,and W-F),trivariate(C-O-W,C-W-F,O-W-F),and four-variate(C-O-W-F)combinations of input variables are constructed for each model.The results indicate that the best predictions obtained using the univariate,bivariate,trivariate,and four-variate models are ANFIS-DE-(O)(MP=0.96),ANFIS-PSO-(C-O)(MP=0.88),ANFIS-DE-(O-W-F)(MP=0.94),and ANFIS-PSO-(C-O-W-F)(MP=0.89),respectively.ANFIS-PSO-(C-O)yielded the best accurate prediction of compressive strength with an MP value of 0.96. 展开更多
关键词 foamed concrete adaptive neuro fuzzy inference system nature-inspired algorithms prediction of compressive strength
原文传递
上一页 1 2 28 下一页 到第
使用帮助 返回顶部