期刊文献+
共找到245篇文章
< 1 2 13 >
每页显示 20 50 100
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
1
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model 被引量:6
2
作者 ZHANG Zeguo YIN Jianchuan +2 位作者 WANG Nini HU Jiangqiang WANG Ning 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期94-105,共12页
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat... An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability. 展开更多
关键词 tidal level prediction harmonious analysis method adaptive network-based fuzzy inference system correlation analysis
下载PDF
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
3
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
下载PDF
Study of impact from the genetic algorithm combined adaptive network-based fuzzy inference system model on business performance
4
作者 HUANG Jui-Ching PAN Wen-Tsao 《通讯和计算机(中英文版)》 2008年第10期52-57,共6页
关键词 遗传算法 计算方法 模糊系统 网络 电子商务
下载PDF
Comparison between Neural Network and Adaptive Neuro-Fuzzy Inference System for Forecasting Chaotic Traffic Volumes
5
作者 Jiin-Po Yeh Yu-Chen Chang 《Journal of Intelligent Learning Systems and Applications》 2012年第4期247-254,共8页
This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the ... This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the input vector, one hidden layer and output layer. Bayesian regularization is employed to obtain the effective number of neurons in the hidden layer. The input variables and target of the adaptive neuro-fuzzy inference system are the same as those of the neural network. The data clustering technique is used to group data points so that the membership functions will be more tailored to the input data, which in turn greatly reduces the number of fuzzy rules. Numerical results indicate that these two models have almost the same accuracy, while the adaptive neuro-fuzzy inference system takes more time to train. It is also shown that although the effective number of neurons in the hidden layer is less than half the number of the input elements, the neural network can have satisfactory performance. 展开更多
关键词 NEURAL Network adaptive NEURO-fuzzy inference system CHAOTIC TRAFFIC VOLUMES State Space Reconstruction
下载PDF
Modelling and control PEMFC using fuzzy neural networks 被引量:1
6
作者 孙涛 闫思佳 +1 位作者 曹广益 朱新坚 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1084-1089,共6页
Proton exchange membrane generation technology is highly efficient, clean and considered as the most hopeful “green” power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system in... Proton exchange membrane generation technology is highly efficient, clean and considered as the most hopeful “green” power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermo-dynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online. This paper first simply analyzes the characters of the PEMFC; and then uses the approach and self-study ability of artificial neural networks to build the model of the nonlinear system, and uses the adaptive neural-networks fuzzy infer system (ANFIS) to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusts the model parameters to control it online. The model and control are implemented in SIMULINK environment. Simulation results showed that the test data and model agreed well, so it will be very useful for optimal and real-time control of PEMFC system. 展开更多
关键词 Proton exchange membrane fuel cell adaptive neural-networks fuzzy infer system MODELING Neural network
下载PDF
Adaptive network fuzzy inference system based navigation controller for mobile robotAdaptive network fuzzy inference system based navigation controller for mobile robot 被引量:1
7
作者 Panati SUBBASH Kil To CHONG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第2期141-151,共11页
Autonomous navigation of a mobile robot in an unknown environment with highly cluttered obstacles is a fundamental issue in mobile robotics research. We propose an adaptive network fuzzy inference system(ANFIS) based ... Autonomous navigation of a mobile robot in an unknown environment with highly cluttered obstacles is a fundamental issue in mobile robotics research. We propose an adaptive network fuzzy inference system(ANFIS) based navigation controller for a differential drive mobile robot in an unknown environment with cluttered obstacles. Ultrasonic sensors are used to capture the environmental information around the mobile robot. A training data set required to train the ANFIS controller has been obtained by designing a fuzzy logic based navigation controller. Additive white Gaussian noise has been added to the sensor readings and fed to the trained ANFIS controller during mobile robot navigation, to account for the effect of environmental noise on sensor readings. The robustness of the proposed navigation controller has been evaluated by navigating the mobile robot in three different environments. The performance of the proposed controller has been verified by comparing the travelled path length/efficiency and bending energy obtained by the proposed method with reference mobile robot navigation controllers, such as neural network, fuzzy logic, and ANFIS. Simulation results presented in this paper show that the proposed controller has better performance compared with reference controllers and can successfully navigate in different environments without any collision with obstacles. 展开更多
关键词 adaptive network fuzzy inference system ADDITIVE WHITE GAUSSIAN noise Autonomous navigation Mobile robot
原文传递
Nonlinear Modeling and Neuro-Fuzzy Control of PEMFC
8
作者 孙涛 卫东 +1 位作者 曹广益 朱新坚 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第3期274-279,共6页
The proton exchange membrane generation technology is highly efficient, and clea n and is considered as the most hopeful “green” power technology. The operatin g principles of proton exchange membrane fuel cell (PEM... The proton exchange membrane generation technology is highly efficient, and clea n and is considered as the most hopeful “green” power technology. The operatin g principles of proton exchange membrane fuel cell (PEMFC) system involve thermody namics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematic al model and control online. This paper analyzed the characters of the PEMFC; an d used the approach and self-study ability of artificial neural networks to bui ld the model of nonlinear system, and adopted the adaptive neural-networks fuzz y infer system to build the temperature model of PEMFC which is used as the refe rence model of the control system, and adjusted the model parameters to control online. The model and control were implemented in SIMULINK environment. The resu lts of simulation show the test data and model have a good agreement. The model is useful for the optimal and real time control of PEMFC system. 展开更多
关键词 proton exchange membrane fuel cell (PEMFC) adaptive neural-networks fuzzy infer system(ANFIS) MODELING neural network
下载PDF
Adaptive neuro fuzzy inference system for classification of water quality status 被引量:9
9
作者 Han Yan,Zhihong Zou,Huiwen Wang School of Economics and Management,Beihang University,Beijing 100191,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第12期1891-1896,共6页
An adaptive neuro fuzzy inference system was used for classifying water quality status of river. It applied several physical and inorganic chemical indicators including dissolved oxygen, chemical oxygen demand, and am... An adaptive neuro fuzzy inference system was used for classifying water quality status of river. It applied several physical and inorganic chemical indicators including dissolved oxygen, chemical oxygen demand, and ammonia-nitrogen. A data set (nine weeks, total 845 observations) was collected from 100 monitoring stations in all major river basins in China and used for training and validating the model. Up to 89.59% of the data could be correctly classified using this model. Such performance was more competitive when compared with artificial neural networks. It is applicable in evaluation and classification of water quality status. 展开更多
关键词 adaptive neuro fuzzy inference system artificial neural networks water quality status CLASSIFICATIon
原文传递
应对零日攻击的混合车联网入侵检测系统
10
作者 方介泼 陶重犇 《计算机应用》 CSCD 北大核心 2024年第9期2763-2769,共7页
现有机器学习方法在面对零日攻击检测时,存在对样本数据过度依赖以及对异常数据不敏感的问题,从而导致入侵检测系统(IDS)难以有效防御零日攻击。因此,提出一种基于Transformer和自适应模糊神经网络推理系统(ANFIS)的混合车联网入侵检测... 现有机器学习方法在面对零日攻击检测时,存在对样本数据过度依赖以及对异常数据不敏感的问题,从而导致入侵检测系统(IDS)难以有效防御零日攻击。因此,提出一种基于Transformer和自适应模糊神经网络推理系统(ANFIS)的混合车联网入侵检测系统。首先,设计了一种数据增强算法,通过先去除噪声再生成的方法解决了数据样本不平衡的问题;其次,将非线性特征交互引入复杂的特征组合,设计了一个特征工程模块;最后,将Transformer的自注意力机制和ANFIS的自适应学习方法相结合,以提高特征表征能力,减少对样本数据的依赖。在CICIDS-2017和UNSW-NB15入侵数据集上将所提系统与Dual-IDS等先进(SOTA)算法进行比较。实验结果表明,对于零日攻击,所提系统在CICIDS-2017入侵数据集上实现了98.64%的检测精确率和98.31%的F1值,在UNSW-NB15入侵数据集上实现了93.07%的检测精确率和92.43%的F1值,验证了所提算法在零日攻击检测方面的高准确性和强泛化能力。 展开更多
关键词 车联网 入侵检测 零日攻击 TRANSFORMER 自适应模糊神经网络推理系统
下载PDF
改进ANFIS对静压箱热误差建模研究
11
作者 钱雨鲲 李岩舟 +3 位作者 杨正昊 秦承斌 王佳宁 吴媚 《机械科学与技术》 CSCD 北大核心 2024年第10期1778-1785,共8页
为了减小静压箱排气孔温度不均匀对薄膜拉伸加工时的影响,通过建立热误差模型,来分析静压箱在不同输入参数下排气孔的温场情况。采用SOM-GRA相结合的综合算法得出最优测温点,以保证输入模型的数据具有代表性,将测温点数量由20降至3。利... 为了减小静压箱排气孔温度不均匀对薄膜拉伸加工时的影响,通过建立热误差模型,来分析静压箱在不同输入参数下排气孔的温场情况。采用SOM-GRA相结合的综合算法得出最优测温点,以保证输入模型的数据具有代表性,将测温点数量由20降至3。利用ANFIS模型建立静压箱的热误差模型,并通过RF算法优化ANFIS中隶属度函数数量参数,将实验验证过的数值模拟数据作为输入的训练数据。预测结果表明较原ANFIS模型、BP模型和RBF模型MAE值分别下降了22.43%、59.97%和49.87%,该优化预测模型具有更高的精度。 展开更多
关键词 热误差模型 自组织映射网络 灰色关联分析 随机森林 自适应神经模糊推理系统
下载PDF
基于ANFIS-LSSVM的计算颜色恒常性算法研究
12
作者 王兴光 罗运辉 +1 位作者 王庆 陈业红 《齐鲁工业大学学报》 CAS 2024年第2期62-72,共11页
计算颜色恒常性是指消除场景光源的影响从而再现物体真实颜色的能力。目前,深度神经网络的应用使颜色恒常性精度显著提高,但大多数深度学习算法训练时间长、计算复杂度高,且需要大量的训练样本。针对此问题,提出了一种结合自适应神经模... 计算颜色恒常性是指消除场景光源的影响从而再现物体真实颜色的能力。目前,深度神经网络的应用使颜色恒常性精度显著提高,但大多数深度学习算法训练时间长、计算复杂度高,且需要大量的训练样本。针对此问题,提出了一种结合自适应神经模糊推理系统(ANFIS)和最小二乘支持向量机(LSSVM)的简单有效的方法。该方法分为训练和预测两个阶段:在训练阶段,首先提取图像特征分别训练ANFIS、LSSVM两种初始光源估计模型,接着利用核函数变换将两种模型融合,然后利用预留训练样本进一步训练得到多元线性回归光源估计模型;在预测阶段,提取测试图像特征后,直接由训练所得模型预测得到该测试图像最终的场景光源颜色值。实验结果表明,与深度学习方法相比,本文所提方法计算复杂度较低,即使在小训练样本中也能有很好的光源估计性能。 展开更多
关键词 计算颜色恒常性 光源估计 自适应神经模糊推理系统(ANFIS) 最小二乘支持向量机(LSSVM)
下载PDF
Below the Data Range Prediction of Soft Computing Wave Reflection of Semicircular Breakwater 被引量:1
13
作者 Suman Kundapura Vittal Hegde Arkal Jose L.S.Pinho 《Journal of Marine Science and Application》 CSCD 2019年第2期167-175,共9页
Coastal defenses such as the breakwaters are important structures to maintain the navigation conditions in a harbor.The estimation of their hydrodynamic characteristics is conventionally done using physical models,sub... Coastal defenses such as the breakwaters are important structures to maintain the navigation conditions in a harbor.The estimation of their hydrodynamic characteristics is conventionally done using physical models,subjecting to higher costs and prolonged procedures.Soft computing methods prove to be useful tools,in cases where the data availability from physical models is limited.The present paper employs adaptive neuro-fuzzy inference system(ANFIS)and artificial neural network(ANN)models to the data obtained from physical model studies to develop a novel methodology to predict the reflection coefficient(Kr)of seaside perforated semicircular breakwaters under low wave heights,for which no physical model data is available.The prediction was done using the input parameters viz.,incident wave height(Hi),wave period(T),center-to-center spacing of perforations(S),diameter of perforations(D),radius of semicircular caisson(R),water depth(d),and semicircular breakwater structure height(hs).The study shows the prediction below the available data range of wave heights is possible by ANFIS and ANN models.However,the ANFIS performed better with R^2=0.9775 and the error reduced in comparison with the ANN model with R2=0.9751.Study includes conventional data segregation and prediction using ANN and ANFIS. 展开更多
关键词 Semicircular BREAKWATER Wave REFLECTIon Below the DATA RANGE Artificial neural network adaptive NEURO-fuzzy inference system
下载PDF
Diagnosis of Neem Leaf Diseases Using Fuzzy-HOBINM and ANFIS Algorithms
14
作者 K.K.Thyagharajan I.Kiruba Raji 《Computers, Materials & Continua》 SCIE EI 2021年第11期2061-2076,共16页
This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth o... This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth of neem leaf to the UK,USA,UAE,and Europe in the form of dried leaves and powder,both of which help reduce diabetesrelated issues,cardiovascular problems,and eye disorders.Diagnosing neem leaf disease is difficult through visual interpretation,owing to similarity in their color and texture patterns.The most common diseases include bacterial blight,Colletotrichum and Alternaria leaf spot,blight,damping-off,powdery mildew,Pseudocercospora leaf spot,leaf web blight,and seedling wilt.However,traditional color and texture algorithms fail to identify leaf diseases due to irregular lumps and surfaces,and rough ridges,as the classification time involved takes as long as a week.The proposed F-HOBINM algorithm recognizes the leaf intensity through the leaky capacitor,and uses subjective intensity and physical stimulus to interpret the diagnosis.Further,the processed leaf images from the HOBINM algorithm are applied to the ANFIS classifier to identify neem leaf diseases.The experimental results show 92.18%accuracy from a database of 1,462 neem leaves. 展开更多
关键词 Higher-order neural network fuzzy c-means clustering Mamdani fuzzy inference system adaptive neuro-fuzzy classifier
下载PDF
Determination of Optimal Manufacturing Parameters for Injection Mold by Inverse Model Basing on MANFIS
15
作者 Chung-Neng Huang Chong-Ching Chang 《Journal of Intelligent Learning Systems and Applications》 2010年第1期28-35,共8页
Since plastic products are with the features as light, anticorrosive and low cost etc., that are generally used in several of tools or components. Consequently, the requirements on the quality and effectiveness in pro... Since plastic products are with the features as light, anticorrosive and low cost etc., that are generally used in several of tools or components. Consequently, the requirements on the quality and effectiveness in production are increasingly serious. However, there are many factors affecting the yield rate of injection products such as material characteristic, mold design, and manufacturing parameters etc. involved with injection machine and the whole manufacturing process. Traditionally, these factors can only be designed and adjusted by many times of trial-and-error tests. It is not only waste of time and resource, but also lack of methodology for referring. Although there are some methods as Taguchi method or neural network etc. proposed for serving and optimizing this problem, they are still insufficient for the needs. For the reasons, a method for determining the optimal parameters by the inverse model of manufacturing platform is proposed in this paper. Through the integration of inverse model basing on MANFIS and Taguchi method, inversely, the optimal manufacturing parameters can be found by using the product requirements. The effectiveness and feasibility of this proposal is confirmed through numerical studies on a real case example. 展开更多
关键词 OPTIMAL MANUFACTURING PARAMETER INJECTIon MOLD Multiple adaptive Network based fuzzy inference system (Manfis) Taguchi Method
下载PDF
考虑电堆寿命的氢燃料电池汽车能量管理策略研究 被引量:4
16
作者 刘建国 任飞龙 +4 位作者 颜伏伍 吴友华 孙云飞 胡达锋 陈挪 《汽车工程学报》 2023年第4期517-527,共11页
提出了一种在满足动力性需求并且以氢燃料电池堆作为主要能源的前提下,能有效延长电堆使用寿命的能量管理策略。提出将需求功率SG滤波后再进行规则控制的能量管理策略,将多种循环工况的结果进行手动优化后作为训练数据集,设计三输入一... 提出了一种在满足动力性需求并且以氢燃料电池堆作为主要能源的前提下,能有效延长电堆使用寿命的能量管理策略。提出将需求功率SG滤波后再进行规则控制的能量管理策略,将多种循环工况的结果进行手动优化后作为训练数据集,设计三输入一输出的自适应神经模糊推理系统控制器,根据其输出结果再进行一次滤波最终形成基于自适应神经模糊推理系统优化的能量管理策略。使用CLTC-P循环工况对能量管理策略进行仿真验证,结果表明,基于自适应神经模糊推理系统优化的能量管理策略能有效延长氢燃料电池剩余使用寿命,相比滤波加规则策略剩余使用寿命增加了33%,并能保持动力电池SOC处于适宜水平。 展开更多
关键词 氢燃料电池汽车 燃料电池寿命 能量管理 SG滤波 自适应神经模糊推理系统
下载PDF
基于自适应神经模糊推理的竖向地震动参数预测模型 被引量:1
17
作者 游姗 胡其志 +1 位作者 张洁 张严方 《大地测量与地球动力学》 CSCD 北大核心 2023年第5期517-522,共6页
为解决当前竖向地震动参数估计不确定性较大的问题,提出基于随机自适应神经模糊推理的竖向地震动预测模型。首先,以太平洋地震工程研究中心的PEER NGA强震数据库为基础,将地震震级、断层距及场地平均剪切波波速3个参数作为输入,将竖向... 为解决当前竖向地震动参数估计不确定性较大的问题,提出基于随机自适应神经模糊推理的竖向地震动预测模型。首先,以太平洋地震工程研究中心的PEER NGA强震数据库为基础,将地震震级、断层距及场地平均剪切波波速3个参数作为输入,将竖向地震动峰值加速度PGA及峰值速度PGV作为估计目标,建立训练数据集及测试数据集;其次,根据地震动参数预测方程,利用随机自适应神经模糊推理技术构建竖向地震动参数ANFIS预测模型,并给出全面的结果分析及信度检验。结果表明,ANFIS模型的竖向地震动衰减结果呈现出近场大震饱和效应、场地放大效应及软土减震效应;ANFIS竖向地震动模型平均绝对百分比误差MAPE约为0.15,与Campbell-Bozorgnia地震动衰减关系相比,PGA与PGV预测的准确率分别提升约77.4%和62.7%,具有较好的可信度。 展开更多
关键词 竖向地震动 预测 模糊推理 自适应神经网络 场地效应
下载PDF
基于优化模糊推理系统的电力变压器故障检测方法 被引量:8
18
作者 游溢 赵普志 +2 位作者 刘冬 晏致涛 刘欣鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2023年第1期71-76,83,共7页
为了提高电力变压器故障检测的准确性和稳定性,提出一种基于一维卷积神经网络和优化自适应神经模糊推理系统的检测方法;将利用溶解气体分析法得到的14个特征属性作为自适应神经模糊推理系统的初始未处理输入,通过一维卷积神经网络从中选... 为了提高电力变压器故障检测的准确性和稳定性,提出一种基于一维卷积神经网络和优化自适应神经模糊推理系统的检测方法;将利用溶解气体分析法得到的14个特征属性作为自适应神经模糊推理系统的初始未处理输入,通过一维卷积神经网络从中选择8个最具指示性的属性;采用改进帝王蝶优化算法对自适应神经模糊推理系统进行训练,并通过真实数据集实验与其他电力变压器故障诊断算法进行检测性能对比。结果表明,所提出方法的电力变压器故障检测准确率达98.91%,50次独立运行中故障检测的标准偏差为±0.01,具有检测准确性高、性能稳健、运行时间短的优点。 展开更多
关键词 自适应神经模糊推理系统 一维卷积神经网络 电力变压器 故障检测 特征属性
下载PDF
人工智能在辅助青光眼性眼底病变的应用前景
19
作者 牟红爽 董欣 王彦红 《现代科学仪器》 2023年第3期118-121,共4页
人工智能(AI)在青光眼性眼底病变(GON)角膜内应用的详细视图。为眼科疾病相关临床信息提供诊断依据,对正常及异常角膜实施准确评估,相较于以往的信息技术,AI具有准确性,还可以无创性的综合分析。神经网络的机器深度学习方式包括识别、... 人工智能(AI)在青光眼性眼底病变(GON)角膜内应用的详细视图。为眼科疾病相关临床信息提供诊断依据,对正常及异常角膜实施准确评估,相较于以往的信息技术,AI具有准确性,还可以无创性的综合分析。神经网络的机器深度学习方式包括识别、定位及量化大量的眼科疾病病理特征,提供准确诊断及提高效率。AI开始被广泛应用于视网膜病变、眼前节疾病以及眼底病变的诊疗中。其中AI医学影像判读可协助临床医生对青光眼性眼底病变(GON)的筛查、辅助诊断做出判断,同时对面临诊断率及准确率的研究与挑战并存。 展开更多
关键词 青光眼性眼底病变 人工智能 应用前景 人工神经网络 深层神经网络 自适应神经模糊推理系统
下载PDF
基于ANFIS乌鸦搜索算法的网络入侵检测性能的优化
20
作者 张小奇 《绵阳师范学院学报》 2023年第5期91-99,共9页
入侵检测系统(IDS)用于检测网络或系统中的异常情况,对网络安全起着至关重要的作用.为降低误报率(FAR),提出了一种基于自适应神经模糊推理系统的乌鸦搜索优化算法(CSO-ANFIS).基于NSL-KDD数据集的入侵检测结果表明,所提模型检测率为95.8... 入侵检测系统(IDS)用于检测网络或系统中的异常情况,对网络安全起着至关重要的作用.为降低误报率(FAR),提出了一种基于自适应神经模糊推理系统的乌鸦搜索优化算法(CSO-ANFIS).基于NSL-KDD数据集的入侵检测结果表明,所提模型检测率为95.80%,FAR为3.45%. 展开更多
关键词 网络安全 入侵检测 自适应神经模糊推理系统 乌鸦搜索优化 NSL-KDD数据集
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部