The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re...The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.展开更多
Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an A...Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results.展开更多
In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, n...In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, neural network and adaptive neurofuzzy inference system(ANFIS) controller with safe boundary algorithm. In this method of target seeking behaviour, the obstacle avoidance at every instant improves the performance of robot in navigation approach. The inputs to the controller are the signals from various sensors fixed at front face, left and right face of the AMR. The output signal from controller regulates the angular velocity of both front power wheels of the AMR. The shortest path is identified using fuzzy, neural network and ANFIS techniques with integrated safe boundary algorithm and the predicted results are validated with experimentation. The experimental result has proven that ANFIS with safe boundary algorithm yields better performance in navigation, in particular with curved/irregular obstacles.展开更多
Accurate intelligent reasoning systems are vital for intelligent manufacturing.In this study,a new intelligent reasoning system was developed for milling processes to accurately predict tool wear and dynamically optim...Accurate intelligent reasoning systems are vital for intelligent manufacturing.In this study,a new intelligent reasoning system was developed for milling processes to accurately predict tool wear and dynamically optimize machining parameters.The developed system consists of a self-learning algorithm with an improved particle swarm optimization(IPSO)learning algorithm,prediction model determined by an improved case-based reasoning(ICBR)method,and optimization model containing an improved adaptive neural fuzzy inference system(IANFIS)and IPSO.Experimental results showed that the IPSO algorithm exhibited the best global convergence performance.The ICBR method was observed to have a better performance in predicting tool wear than standard CBR methods.The IANFIS model,in combination with IPSO,enabled the optimization of multiple objectives,thus generating optimal milling parameters.This paper offers a practical approach to developing accurate intelligent reasoning systems for sustainable and intelligent manufacturing.展开更多
Hypertension is a leading risk factor for cardiovascular disease (CVD) and the overlap of diabetes mellitus (DM)with hypertension can lead to severe complications. There is a need for early diagnosis and risk stratifi...Hypertension is a leading risk factor for cardiovascular disease (CVD) and the overlap of diabetes mellitus (DM)with hypertension can lead to severe complications. There is a need for early diagnosis and risk stratification toimplement an overall risk management strategy. Presently, the conventional method is not suitable for large-scalescreening. The primary aim of this study is to develop an automated diagnostic system that uses Photoplethysmogram (PPG) signals for the non-invasive diagnosis of hypertension and DM-II. The proposed model usesa statistical feature extracted by decomposing the PPG signal up to level 11 into a sub-band using Discrete wavelettransform (DWT), and a variety of classifiers are used for the classification of hypertension and detection of DM-IIpatients. Three feature selection techniques used are Spearman correlation, ReliefF and Minimum RedundancyMaximum Relevance (mRMR) to select 20 top features out of 130 features using correlation with systole bloodpressure (SBP), diastole blood pressure (DBP) values and D-II. The highest accuracy attained by the Adaptiveneural fuzzy system (ANFIS) for classification categories such as normal (NT) vs prehypertension(PHT), NT vs.hypertension type 1 (HT-I), NT vs hypertension type 2 (HT-II) in terms of F1 score are 92.%, 98.5%, 98.3% (SBP)and 83.1%, 95.6%, 86.8% (DBP),respectively. The accuracy achieved by the adaptive-network-based fuzzyinference system (ANFIS) for the classification of normal (non-diabetic) vs. diabetic patients is 99.1%. The hybridlearning algorithm-based classifier achieved higher accuracy for hypertension risk stratification as compared tothe hard computing classifier, which requires parameter tuning and DWT decomposition is robust to the noisysignal, overcoming the limitation of the morphological feature-based model.展开更多
基金Supported by the Soft Science Program of Jiangsu Province(BR2010079)~~
文摘The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.
文摘Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results.
文摘In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, neural network and adaptive neurofuzzy inference system(ANFIS) controller with safe boundary algorithm. In this method of target seeking behaviour, the obstacle avoidance at every instant improves the performance of robot in navigation approach. The inputs to the controller are the signals from various sensors fixed at front face, left and right face of the AMR. The output signal from controller regulates the angular velocity of both front power wheels of the AMR. The shortest path is identified using fuzzy, neural network and ANFIS techniques with integrated safe boundary algorithm and the predicted results are validated with experimentation. The experimental result has proven that ANFIS with safe boundary algorithm yields better performance in navigation, in particular with curved/irregular obstacles.
基金supported by the National Natural Science Foundation of China(Grant No.52275464)the Natural Science Foundation for Young Scientists of Hebei Province(Grant No.E2022203125)+1 种基金the Scientific Research Project for National High-level Innovative Talents of Hebei Province Full-time Introduction(Grant No.2021HBQZYCXY004)the National Natural Science Foundation of China(Grant No.52075300).
文摘Accurate intelligent reasoning systems are vital for intelligent manufacturing.In this study,a new intelligent reasoning system was developed for milling processes to accurately predict tool wear and dynamically optimize machining parameters.The developed system consists of a self-learning algorithm with an improved particle swarm optimization(IPSO)learning algorithm,prediction model determined by an improved case-based reasoning(ICBR)method,and optimization model containing an improved adaptive neural fuzzy inference system(IANFIS)and IPSO.Experimental results showed that the IPSO algorithm exhibited the best global convergence performance.The ICBR method was observed to have a better performance in predicting tool wear than standard CBR methods.The IANFIS model,in combination with IPSO,enabled the optimization of multiple objectives,thus generating optimal milling parameters.This paper offers a practical approach to developing accurate intelligent reasoning systems for sustainable and intelligent manufacturing.
文摘Hypertension is a leading risk factor for cardiovascular disease (CVD) and the overlap of diabetes mellitus (DM)with hypertension can lead to severe complications. There is a need for early diagnosis and risk stratification toimplement an overall risk management strategy. Presently, the conventional method is not suitable for large-scalescreening. The primary aim of this study is to develop an automated diagnostic system that uses Photoplethysmogram (PPG) signals for the non-invasive diagnosis of hypertension and DM-II. The proposed model usesa statistical feature extracted by decomposing the PPG signal up to level 11 into a sub-band using Discrete wavelettransform (DWT), and a variety of classifiers are used for the classification of hypertension and detection of DM-IIpatients. Three feature selection techniques used are Spearman correlation, ReliefF and Minimum RedundancyMaximum Relevance (mRMR) to select 20 top features out of 130 features using correlation with systole bloodpressure (SBP), diastole blood pressure (DBP) values and D-II. The highest accuracy attained by the Adaptiveneural fuzzy system (ANFIS) for classification categories such as normal (NT) vs prehypertension(PHT), NT vs.hypertension type 1 (HT-I), NT vs hypertension type 2 (HT-II) in terms of F1 score are 92.%, 98.5%, 98.3% (SBP)and 83.1%, 95.6%, 86.8% (DBP),respectively. The accuracy achieved by the adaptive-network-based fuzzyinference system (ANFIS) for the classification of normal (non-diabetic) vs. diabetic patients is 99.1%. The hybridlearning algorithm-based classifier achieved higher accuracy for hypertension risk stratification as compared tothe hard computing classifier, which requires parameter tuning and DWT decomposition is robust to the noisysignal, overcoming the limitation of the morphological feature-based model.