期刊文献+
共找到2,333篇文章
< 1 2 117 >
每页显示 20 50 100
Adaptive Backstepping Output Feedback Control for SISO Nonlinear System Using Fuzzy Neural Networks 被引量:2
1
作者 Shao-Cheng Tong Yong-Ming Li 《International Journal of Automation and computing》 EI 2009年第2期145-153,共9页
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the ... In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach. 展开更多
关键词 Nonlinear systems backstepping control adaptive fuzzy neural networks control state observer output feedback control.
下载PDF
Adaptive output-feedback control for MIMO nonlinear systems with time-varying delays using neural networks 被引量:1
2
作者 Weisheng Chen Ruihong Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期850-858,共9页
An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time de... An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time delays.Different from the existing results,this paper need not the assumption that the upper bounding functions of time-delay terms are known,and only a neural network is employed to compensate for all the upper bounding functions of time-delay terms,so the designed controller procedure is more simplified.In addition,the resulting closed-loop system is proved to be semi-globally ultimately uniformly bounded,and the output regulation error converges to a small residual set around the origin.Two simulation examples are provided to verify the effectiveness of control scheme. 展开更多
关键词 neural network output-feedback nonlinear time-delay systems backstepping.
下载PDF
Adaptive Control Based on Neural Networks for an Uncertain 2-DOF Helicopter System With Input Deadzone and Output Constraints 被引量:15
3
作者 Yuncheng Ouyang Lu Dong +1 位作者 Lei Xue Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第3期807-815,共9页
In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertaintie... In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertainties and input deadzone, the neural network technique is introduced because of its capability in approximation. In order to update the weights of the neural network, an adaptive control method is utilized to improve the system adaptability. Furthermore, the integral barrier Lyapunov function(IBLF) is adopt in control design to guarantee the condition of output constraints and boundedness of the corresponding tracking errors. The Lyapunov direct method is applied in the control design to analyze system stability and convergence. Finally, numerical simulations are conducted to prove the feasibility and effectiveness of the proposed control based on the model of Quanser's 2-DOF helicopter. 展开更多
关键词 2-degree of FREEDOM (DOF) helicopter adaptive control INPUT DEADZONE integral barrier Lyapunov function neural networks output constraints
下载PDF
Adaptive output feedback control for nonlinear time-delay systems using neural network 被引量:9
4
作者 Weisheng CHEN Junmin LI 《控制理论与应用(英文版)》 EI 2006年第4期313-320,共8页
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backsteppi... This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples. 展开更多
关键词 Time delay Nonlinear system neural network BACKSTEPPING output feedback adaptive control
下载PDF
Output-feedback adaptive stochastic nonlinear stabilization using neural networks
5
作者 Weisheng Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期81-87,共7页
For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assum... For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assumed to be completely unknown and only a neural network is employed to compensate for all unknown nonlinear functions so that the controller design is more simplified. Based on stochastic LaSalle theorem, the resulted closed-loop system is proved to be globally asymptotically stable in probability. The simulation results further verify the effectiveness of the control scheme. 展开更多
关键词 neural network output-feedback nonlinear stochastic systems backstepping.
下载PDF
A Fractional-Order Ultra-Local Model-Based Adaptive Neural Network Sliding Mode Control of n-DOF Upper-Limb Exoskeleton With Input Deadzone
6
作者 Dingxin He HaoPing Wang +1 位作者 Yang Tian Yida Guo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期760-781,共22页
This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Co... This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method. 展开更多
关键词 adaptive control input deadzone model-free control n-DOF upper-limb exoskeleton neural network
下载PDF
Adaptive H~∞ Control of Nonlinear Systems with Neural Networks 被引量:6
7
作者 姜长生 陈谋 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第1期36-41,共6页
The discussion is devoted to the adaptive H ∞ control method based on RBF neural networks for uncertain nonlinear systems in this paper. The controller consists of an equivalent controller and an H ∞ cont... The discussion is devoted to the adaptive H ∞ control method based on RBF neural networks for uncertain nonlinear systems in this paper. The controller consists of an equivalent controller and an H ∞ controller. The RBF neural networks are used to approximate the nonlinear functions and the approximation errors of the neural networks are used in the adaptive law to improve the performance of the systems. The H ∞ controller is designed for attenuating the influence of external disturbance and neural network approximation errors. The controller can not only guarantee stability of the nonlinear systems, but also attenuate the effect of the external disturbance and neural networks approximation errors to reach performance indexes. Finally, an example validates the effectiveness of this method. 展开更多
关键词 neural networks nonlinear systems adaptive control H control
下载PDF
Adaptive Neural Network-Based Control for a Class of Nonlinear Pure-Feedback Systems With Time-Varying Full State Constraints 被引量:14
8
作者 Tingting Gao Yan-Jun Liu +3 位作者 Senior Member IEEE Lei Liu Dapeng Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期923-933,共11页
Abstract--In this paper, an adaptive neural network (NN) control approach is proposed for nonlinear pure-feedback sys- tems with time-varying full state constraints. The pure-feedback systems of this paper are assum... Abstract--In this paper, an adaptive neural network (NN) control approach is proposed for nonlinear pure-feedback sys- tems with time-varying full state constraints. The pure-feedback systems of this paper are assumed to possess nonlinear function uncertainties. By using the mean value theorem, pure-feedback systems can be transformed into strict feedback forms. For the newly generated systems, NNs are employed to approximate unknown items. Based on the adaptive control scheme and backstepping algorithm, an intelligent controller is designed. At the same time, time-varying Barrier Lyapunov functions (BLFs) with error variables are adopted to avoid violating full state constraints in every step of the backstepping design. All closed- loop signals are uniformly ultimately bounded and the output tracking error converges to the neighborhood of zero, which can be verified by using the Lyapunov stability theorem. Two simulation examples reveal the performance of the adaptive NN control approach. Index TermsmAdaptive control, neural networks (NNs), non- linear pure-feedback systems, time-varying constraints. 展开更多
关键词 adaptive control neural networks(NNs) nonlinear pure-feedback systems time-varying constraints
下载PDF
Adaptive Backstepping Terminal Sliding Mode Control Method Based on Recurrent Neural Networks for Autonomous Underwater Vehicle 被引量:12
9
作者 Chao Yang Feng Yao Ming-Jun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期228-243,共16页
The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic ... The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks(RNN) is proposed. Firstly, considering the inaccu?rate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty(SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering?reduction method is proposed based on sigmoid function. In chattering?reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapu?nov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can e ectively achieve high?precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and e ectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool?experi?ments of AUV. 展开更多
关键词 Autonomous underwater vehicle(AUV) Trajectory tracking neural networks Backstepping method Terminal sliding mode adaptive control
下载PDF
Neural Network Based Adaptive Tracking Control for a Class of Pure Feedback Nonlinear Systems With Input Saturation 被引量:7
10
作者 Nassira Zerari Mohamed Chemachema Najib Essounbouli 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期278-290,共13页
In this paper, an adaptive neural networks(NNs)tracking controller is proposed for a class of single-input/singleoutput(SISO) non-affine pure-feedback non-linear systems with input saturation. In the proposed approach... In this paper, an adaptive neural networks(NNs)tracking controller is proposed for a class of single-input/singleoutput(SISO) non-affine pure-feedback non-linear systems with input saturation. In the proposed approach, the original input saturated nonlinear system is augmented by a low pass filter.Then, new system states are introduced to implement states transformation of the augmented model. The resulting new model in affine Brunovsky form permits direct and simpler controller design by avoiding back-stepping technique and its complexity growing as done in existing methods in the literature.In controller design of the proposed approach, a state observer,based on the strictly positive real(SPR) theory, is introduced and designed to estimate the new system states, and only two neural networks are used to approximate the uncertain nonlinearities and compensate for the saturation nonlinearity of actuator. The proposed approach can not only provide a simple and effective way for construction of the controller in adaptive neural networks control of non-affine systems with input saturation, but also guarantee the tracking performance and the boundedness of all the signals in the closed-loop system. The stability of the control system is investigated by using the Lyapunov theory. Simulation examples are presented to show the effectiveness of the proposed controller. 展开更多
关键词 adaptive control INPUT SATURATION neural networks systems (NNs) nonlinear pure-feedback
下载PDF
Adaptive control of system with hysteresis using neural networks 被引量:3
11
作者 Li Chuntao Tan Yonghong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期163-167,共5页
An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the thr... An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the three-layer neural network (NN), whose weights are derived from Lyapunov stability analysis, guarantees closed-loop semiglobal stability and convergence of the tracking errors to a small residual set. An example is used to confirm the effectiveness of the proposed control scheme. 展开更多
关键词 neural networks HYSTERESIS adaptive control preisach model.
下载PDF
Adaptive Output-feedback Regulation for Nonlinear Delayed Systems Using Neural Network 被引量:9
12
作者 Wei-Sheng Chen Jun-Min Li Department of Applied Mathematics,Xidian University,Xi′an 710071,PRC 《International Journal of Automation and computing》 EI 2008年第1期103-108,共6页
A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying timedelay systems is proposed. Both the designed observer and controller are independent of time delay.... A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying timedelay systems is proposed. Both the designed observer and controller are independent of time delay. Different from the existing results, where the upper bounding functions of time-delay terms are assumed to be known, we only use an NN to compensate for all unknown upper bounding functions without that assumption. The proposed design method is proved to be able to guarantee semi-global uniform ultimate boundedness of all the signals in the closed system, and the system output is proved to converge to a small neighborhood of the origin. The simulation results verify the effectiveness of the control scheme. 展开更多
关键词 adaptive neural network (NN) output-feedback nonlinear time-delay systems BACKSTEPPING
下载PDF
Adaptive Learning with Large Variability of Teaching Signals for Neural Networks and Its Application to Motion Control of an Industrial Robot 被引量:2
13
作者 Fusaomi Nagata Keigo Watanabe 《International Journal of Automation and computing》 EI 2011年第1期54-61,共8页
Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward contr... Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward controllers such as gravity compensator, Coriolis/centrifugal force compensator and friction compensators have been built in the controller. Generally, it causes heavy computational load when calculating the compensating value within a short sampling period. In this paper, integrated recurrent neural networks are applied as a feedforward controller for PUMA560 manipulator. The feedforward controller works instead of gravity and Coriolis/centrifugal force compensators. In the learning process of the neural network by using back propagation algorithm, the learning coefficient and gain of sigmoid function are tuned intuitively and empirically according to teaching signals. The tuning is complicated because it is being conducted by trial and error. Especially, when the scale of teaching signal is large, the problem becomes crucial. To cope with the problem which concerns the learning performance, a simple and adaptive learning technique for large scale teaching signals is proposed. The learning techniques and control effectiveness are evaluated through simulations using the dynamic model of PUMA560 manipulator. 展开更多
关键词 neural networks large-scale teaching signal sigmoid function adaptive learning servo system PUMA560 manipulator trajectory following control nonlinear control.
下载PDF
Output-feedback Adaptive Control for a Class of Nonlinear Systems with Unknown Control Directions 被引量:9
14
作者 LIU Yun-Gang 《自动化学报》 EI CSCD 北大核心 2007年第12期1306-1312,共7页
在这份报纸,产量反馈适应稳定与未知控制方向为非线性的系统的一个班被调查。首先通过线性州的转变,未知控制系数在一起是 lumped,原来的系统被转变到控制设计为变得可行的一个新系统。在为状态和参数估计的一个观察员和一个评估者... 在这份报纸,产量反馈适应稳定与未知控制方向为非线性的系统的一个班被调查。首先通过线性州的转变,未知控制系数在一起是 lumped,原来的系统被转变到控制设计为变得可行的一个新系统。在为状态和参数估计的一个观察员和一个评估者的介绍以后,分别地,然后,一个建设性的设计过程为产量反馈被给使用综合者 backstepping 并且调节功能技术的适应稳定控制器。而所有另外的靠近环的系统状态被围住,设计的控制器保证状态集成到起源的原来的系统,这被显示出而所有另外的靠近环的系统状态被围住。模拟结果被说明显示出建议途径的有效性。 展开更多
关键词 自适应控制 输出反馈 非线性系统 未知控制指示 BACKSTEPPING
下载PDF
Adaptive Control of Flexible Redundant Manipulators Using Neural Networks 被引量:2
15
作者 宋轶民 李建新 +1 位作者 王世宇 刘建平 《Transactions of Tianjin University》 EI CAS 2006年第6期429-433,共5页
An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attach... An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy. 展开更多
关键词 flexible manipulators kinematic redundancy active vibration control neural networks adaptive control
下载PDF
Robust adaptive control for a class of uncertain non-affine nonlinear systems using neural state feedback compensation 被引量:1
16
作者 赵石铁 高宪文 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期636-643,共8页
A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback c... A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback compensation are used, and then to compensate the approximation error and external disturbance, a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proven that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method. Finally, two simulation examples show that the proposed method exhibits strong robustness, fast response and small tracking error, even for the non-affine nonlinear system with external disturbance, which confirms the effectiveness of the proposed approach. 展开更多
关键词 adaptive control neural networks uncertain non-affine systems state feedback Lyapunov stability
下载PDF
Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network-based adaptive gain scheduling 被引量:12
17
作者 YANG Yueneng YAN Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期580-586,共7页
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st... A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC. 展开更多
关键词 backstepping control sliding mode control(SMC) neural network(NN) strict-feedback system chattering decrease
下载PDF
Adaptive recurrent neural network for uncertainties estimation in feedback control system 被引量:1
18
作者 Adel Merabet Saikrishna Kanukollu +1 位作者 Ahmed Al-Durra Ehab F.El-Saadany 《Journal of Automation and Intelligence》 2023年第3期119-129,共11页
In this paper,a recurrent neural network(RNN)is used to estimate uncertainties and implement feedback control for nonlinear dynamic systems.The neural network approximates the uncertainties related to unmodeled dynami... In this paper,a recurrent neural network(RNN)is used to estimate uncertainties and implement feedback control for nonlinear dynamic systems.The neural network approximates the uncertainties related to unmodeled dynamics,parametric variations,and external disturbances.The RNN has a single hidden layer and uses the tracking error and the output as feedback to estimate the disturbance.The RNN weights are online adapted,and the adaptation laws are developed from the stability analysis of the controlled system with the RNN estimation.The used activation function,at the hidden layer,has an expression that simplifies the adaptation laws from the stability analysis.It is found that the adaptive RNN enhances the tracking performance of the feedback controller at the transient and steady state responses.The proposed RNN based feedback control is applied to a DC–DC converter for current regulation.Simulation and experimental results are provided to show its effectiveness.Compared to the feedforward neural network and the conventional feedback control,the RNN based feedback control provides good tracking performance. 展开更多
关键词 feedback control adaptive control Recurrent neural network Uncertainties estimation
下载PDF
Adaptive L_2 control of nonlinear systems using neural networks
19
作者 HuaijingQU YingZHANG FengrongSUN 《控制理论与应用(英文版)》 EI 2004年第4期332-338,共7页
An adaptive neural network controller is developed to achieve output-tracking of a class of nonlinear systems. The global L 2 stability of the closed-loop system is established. The proposed control design overcomes t... An adaptive neural network controller is developed to achieve output-tracking of a class of nonlinear systems. The global L 2 stability of the closed-loop system is established. The proposed control design overcomes the limitation of the conventional adaptive neural control design where the modeling error brought by neural networks is assumed to be bounded over a compact set. Moreover, the generalized matching conditions are also relaxed in the proposed L 2 control design as the gains for the external disturbances entering the system are allowed to have unknown upper bounds. 展开更多
关键词 adaptive control neural network Nonlinear systems STABILITY L 2 controller Backstepping design
下载PDF
Adaptive Control by Using Neural Networks
20
作者 郝继红 吕强 +1 位作者 段运波 许耀铭 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1994年第2期21-25,共5页
AdaptiveControlbyUsingNeuralNetworks¥(郝继红)(吕强)(段运波)(许耀铭)HAOJihong;LUQiang;DUANYunbo;XUYaoming(Dept.ofPowerEn... AdaptiveControlbyUsingNeuralNetworks¥(郝继红)(吕强)(段运波)(许耀铭)HAOJihong;LUQiang;DUANYunbo;XUYaoming(Dept.ofPowerEngineering,Harbini... 展开更多
关键词 ss: neural networks FUNCTIONAL APPROXIMATION adaptive control identification
下载PDF
上一页 1 2 117 下一页 到第
使用帮助 返回顶部