期刊文献+
共找到198篇文章
< 1 2 10 >
每页显示 20 50 100
An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance
1
作者 N.Kanagaraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3213-3226,共14页
The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant... The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria. 展开更多
关键词 adaptive neuro-fuzzy inference system(anfis) fuzzy logic controller fractional order control PID controller first order time delay system
下载PDF
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
2
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
下载PDF
Composition Estimation of Reactive Batch Distillation by Using Adaptive Neuro-Fuzzy Inference System 被引量:3
3
作者 S.M.Khazraee A.H.Jahanmiri 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第4期703-710,共8页
Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distilla... Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distillation,but its performance is heavily dependent on the thermodynamic modeling of vapor-liquid equilibrium,which is difficult to initialize and tune.In this paper an inferential state estimation scheme based on adaptive neuro-fuzzy inference system(ANFIS) ,which is a model base estimator,is employed for composition estimation by using temperature measurements in multicomponent reactive batch distillation.The state estimator is supported by data from a complete dynamic model that includes component and energy balance equations accompanied with thermodynamic relations and reaction kinetics.The mathematical model is verified by pilot plant data.The simulation results show that the ANFIS estimator provides reliable and accurate estimation for component concentrations in reactive batch distillation.The estimated states form a basis for improving the performance of reactive batch distillation either through decision making of an operator or through an automatic closed-loop control scheme. 展开更多
关键词 reactive batch distillation MULTICOMPONENT pilot plant adaptive neuro-fuzzy inference system state estimation
下载PDF
A reversibly used cooling tower with adaptive neuro-fuzzy inference system 被引量:2
4
作者 吴加胜 张国强 +3 位作者 张泉 周晋 郭永辉 沈炜 《Journal of Central South University》 SCIE EI CAS 2012年第3期715-720,共6页
An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demons... An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT. 展开更多
关键词 reversibly used cooling tower HEATING adaptive neuro-fuzzy inference system fuzzy modeling approach
下载PDF
Detection of small bowel tumor in wireless capsule endoscopy images using an adaptive neuro-fuzzy inference system 被引量:1
5
作者 Mahdi Alizadeh Omid Haji Maghsoudi +3 位作者 Kaveh Sharzehi Hamid Reza Hemati Alireza Kamali Asl Alireza Talebpour 《The Journal of Biomedical Research》 CAS CSCD 2017年第5期419-427,共9页
Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate.The purpose of this study was to evaluate the validity and reliability of an automatic post-processing met... Automatic diagnosis tool helps physicians to evaluate capsule endoscopic examinations faster and more accurate.The purpose of this study was to evaluate the validity and reliability of an automatic post-processing method for identifying and classifying wireless capsule endoscopic images, and investigate statistical measures to differentiate normal and abnormal images. The proposed technique consists of two main stages, namely, feature extraction and classification. Primarily, 32 features incorporating four statistical measures(contrast, correlation, homogeneity and energy) calculated from co-occurrence metrics were computed. Then, mutual information was used to select features with maximal dependence on the target class and with minimal redundancy between features. Finally, a trained classifier, adaptive neuro-fuzzy interface system was implemented to classify endoscopic images into tumor, healthy and unhealthy classes. Classification accuracy of 94.2% was obtained using the proposed pipeline. Such techniques are valuable for accurate detection characterization and interpretation of endoscopic images. 展开更多
关键词 adaptive neuro-fuzzy inference system co-occurrence matrix wireless capsule endoscopy texture feature
下载PDF
Column breakthrough studies for the removal and recovery of phosphate by lime-iron sludge:Modeling and optimization using artificial neural network and adaptive neuro-fuzzy inference system
6
作者 Beverly S.Chittoo Clint Sutherland 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1847-1859,共13页
Increases in the treatment of water to meet the growing water demand ultimately result in unmanageable quantities of residuals,the handling,and disposal of which is a major environmental issue.Consequently,research in... Increases in the treatment of water to meet the growing water demand ultimately result in unmanageable quantities of residuals,the handling,and disposal of which is a major environmental issue.Consequently,research into beneficial reuse of water treatment residuals continues unabated.This study investigated the applicability of lime-iron sludge for phosphate adsorption by fixed-bed column adsorption.Laboratory-scale experiments were conducted at varying flow rates and bed depths.Fundamental and empirical models(Thomas,Yan,Bohart-Adams,Yoon-Nelson,and Wolboroska)as well as artificial intelligence techniques(Artificial neural network(ANN)and Adaptive neuro-fuzzy inference system(ANFIS))were used to simulate experimental breakthrough curves and predict column dynamics.Increase in flow rate resulted in reduced adsorption capacity.However,adsorption capacity was not affected by bed depth.ANN was superior in predicting breakthrough curves and predicted breakthrough times with high accuracy(R^2>0.9962).Na OH(0.5 mol·L^-1)was successfully used to regenerate the adsorption bed.After nine cyclic adsorption/desorption runs,only a marginal decrease in adsorption and desorption efficiencies of 10%and 8%respectively was observed.The same regenerate Na OH solution was reused for all desorption cycles.After nine cycles the eluent desorbed a total of 1550 mg phosphate exhibiting potential for further reuse. 展开更多
关键词 Adsorption PHOSPHATE SLUDGE adaptive neuro-fuzzy inference System Neural Network
下载PDF
The Development of an Alternative Method for the Sovereign Credit Rating System Based on Adaptive Neuro-Fuzzy Inference System
7
作者 Hakan Pabuccu Tuba Yakici Ayan 《American Journal of Operations Research》 2017年第1期41-55,共15页
The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in t... The main purpose of this article is to determine the factors affecting credit rating and to develop the credit rating system based on statistical methods, fuzzy logic and artificial neural network. Variables used in this study were determined by the literature review and then the number of them was reduced by using stepwise regression analysis. Resulting variables were used as independent variables in the logistic model and as input variables for ANN and ANFIS model. After evaluating the models and comparing with each other, the ANFIS model was chosen as the best model to forecast credit rating. Rating determination was made for the countries that haven’t had a credit rating. Consequently, the ANFIS model made consistent, reliable and successful rating forecasts for the countries. 展开更多
关键词 Credit Rating Logistic Regression (LR) Neural Networks (ANN) adaptive neuro-fuzzy inference System (anfis) Comparative Studies
下载PDF
Application of the Adaptive Neuro-Fuzzy Inference System for Optimal Design of Reinforced Concrete Beams
8
作者 Jiin-Po Yeh Ren-Pei Yang 《Journal of Intelligent Learning Systems and Applications》 2014年第4期162-175,共14页
Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live l... Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live loads, compressive strength of concrete and yield strength of steel;design variables are the width and effective depth of the continuous beam and steel ratios for positive and negative moments. The constraints are built based on the ACI Building Code by considering the strength requirements of shear and the maximum positive and negative moments, the development length of flexural reinforcement, and the serviceability requirement of deflection. The objective function is to minimize the total cost of steel and concrete. The optimal data found from the genetic algorithm are divided into three groups: the training set, the checking set and the testing set for the use of the adaptive neuro-fuzzy inference system (ANFIS). The input vector of ANFIS consists of the yield strength of steel, compressive strength of concrete, dead load, span, width and effective depth of the beam;its outputs are the minimum total cost and optimal steel ratios for positive and negative moments. To make ANFIS more efficient, the technique of Subtractive Clustering is applied to group the data to help streamline the fuzzy rules. Numerical results show that the performance of ANFIS is excellent, with correlation coefficients between the three targets and outputs of the testing data being greater than 0.99. 展开更多
关键词 Continuous Reinforced Concrete BEAMS GENETIC Algorithm adaptive neuro-fuzzy inference System Correlation COEFFICIENTS
下载PDF
Comparison between Neural Network and Adaptive Neuro-Fuzzy Inference System for Forecasting Chaotic Traffic Volumes
9
作者 Jiin-Po Yeh Yu-Chen Chang 《Journal of Intelligent Learning Systems and Applications》 2012年第4期247-254,共8页
This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the ... This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the input vector, one hidden layer and output layer. Bayesian regularization is employed to obtain the effective number of neurons in the hidden layer. The input variables and target of the adaptive neuro-fuzzy inference system are the same as those of the neural network. The data clustering technique is used to group data points so that the membership functions will be more tailored to the input data, which in turn greatly reduces the number of fuzzy rules. Numerical results indicate that these two models have almost the same accuracy, while the adaptive neuro-fuzzy inference system takes more time to train. It is also shown that although the effective number of neurons in the hidden layer is less than half the number of the input elements, the neural network can have satisfactory performance. 展开更多
关键词 NEURAL Network adaptive neuro-fuzzy inference System CHAOTIC TRAFFIC VOLUMES State Space Reconstruction
下载PDF
基于ANFIS-LSSVM的计算颜色恒常性算法研究
10
作者 王兴光 罗运辉 +1 位作者 王庆 陈业红 《齐鲁工业大学学报》 CAS 2024年第2期62-72,共11页
计算颜色恒常性是指消除场景光源的影响从而再现物体真实颜色的能力。目前,深度神经网络的应用使颜色恒常性精度显著提高,但大多数深度学习算法训练时间长、计算复杂度高,且需要大量的训练样本。针对此问题,提出了一种结合自适应神经模... 计算颜色恒常性是指消除场景光源的影响从而再现物体真实颜色的能力。目前,深度神经网络的应用使颜色恒常性精度显著提高,但大多数深度学习算法训练时间长、计算复杂度高,且需要大量的训练样本。针对此问题,提出了一种结合自适应神经模糊推理系统(ANFIS)和最小二乘支持向量机(LSSVM)的简单有效的方法。该方法分为训练和预测两个阶段:在训练阶段,首先提取图像特征分别训练ANFIS、LSSVM两种初始光源估计模型,接着利用核函数变换将两种模型融合,然后利用预留训练样本进一步训练得到多元线性回归光源估计模型;在预测阶段,提取测试图像特征后,直接由训练所得模型预测得到该测试图像最终的场景光源颜色值。实验结果表明,与深度学习方法相比,本文所提方法计算复杂度较低,即使在小训练样本中也能有很好的光源估计性能。 展开更多
关键词 计算颜色恒常性 光源估计 自适应神经模糊推理系统(anfis) 最小二乘支持向量机(LSSVM)
下载PDF
Adaptive Neuro-Fuzzy Inference System for Thermal Field Evaluation of Underground Cable System
11
作者 Mamdooh S. AI-Saud 《Journal of Energy and Power Engineering》 2012年第10期1643-1650,共8页
The influence of thermal circuit parameters on a buried underground cable is investigated using an ANFIS (adaptive neuro-fuzzy inference system). Finite element solution of the heat conduction equation is used, comb... The influence of thermal circuit parameters on a buried underground cable is investigated using an ANFIS (adaptive neuro-fuzzy inference system). Finite element solution of the heat conduction equation is used, combined with artificial intelligence methods. The cable temperature depends on several parameters, such as the ambient temperature, the currents flowing through the conductor and the resistivity of the surrounding soil. In this paper, ANFIS is used to simulate the problem of the thermal field of underground cables under various parameters variation and climatic conditions. The developed model was trained using data generated from FEM (finite element method) for different configurations (training set) of the thermal field problem. After training, the system is tested for several scenarios, differing significantly from the training cases. It is shown that the proposed method is very time efficient and accurate in calculating the thermal fields compared to the relatively time consuming finite element method; thus ANFIS provides a potential computationally efficient and inexpensive predictive tool for more effective thermal design of underground cable systems. 展开更多
关键词 Underground cables AMPACITY thermal analysis finite element method adaptive neuro-fuzzy inference system.
下载PDF
APPLICATION STUDY ON ADAPTIVE NEURAL FUZZY INFERENCE MODEL IN COMPLEX SOCIAL-TECHNICAL SYSTEM
12
作者 冯绍红 李东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第4期393-399,共7页
The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re... The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields. 展开更多
关键词 complex adaptive system adaptive neural fuzzy inference system anfis complex social-technical system organizational efficiency
下载PDF
基于SSA-ANFIS模型的BDS-3卫星钟差短期预报
13
作者 蔡成林 吴明杰 吕开慧 《大地测量与地球动力学》 CSCD 北大核心 2024年第9期926-931,共6页
针对卫星钟差时间序列具有非线性和非平稳的特性,以及趋势分量与随机分量相互干扰可能会影响预报精度的问题,提出一种以奇异谱分析(singular spectrum analysis, SSA)为基础,融合自适应模糊神经网络(adaptive neuro-fuzzy inference sys... 针对卫星钟差时间序列具有非线性和非平稳的特性,以及趋势分量与随机分量相互干扰可能会影响预报精度的问题,提出一种以奇异谱分析(singular spectrum analysis, SSA)为基础,融合自适应模糊神经网络(adaptive neuro-fuzzy inference system, ANFIS)的卫星钟差预报模型SSA-ANFIS。首先利用SSA对钟差一次差序列进行分解和重构,从而得到趋势项和残差项;然后,使用ANFIS对重构分量进行预报,并将预报结果叠加还原,得到最终预报钟差值;最后,通过实验对比SSA-ANFIS与GM、QP、LSTM和ANFIS模型的预报效果。结果表明,相较于LSTM和ANFIS模型,该模型预报精度分别提高25.7%~40.7%和39.4%~45.7%。 展开更多
关键词 卫星钟差 奇异谱分析 自适应模糊神经网络模型 钟差预报
下载PDF
Cancerous cell viability affected by synergism between electric pulses and a low dose of silver nanoparticle:An adaptive neuro-fuzzy inference system
14
作者 Salim Mirshahi Behzad Vahedi +1 位作者 Kiarash Aryana Ameneh Sazgarnia 《Medicine in Novel Technology and Devices》 2024年第1期45-52,共8页
In the current study,applying simultaneously electroporation and silver nanoparticles(SNPs)are considered.Moreover,one restriction normally assigned to such nanoparticles is their side effects on the vital organs of t... In the current study,applying simultaneously electroporation and silver nanoparticles(SNPs)are considered.Moreover,one restriction normally assigned to such nanoparticles is their side effects on the vital organs of the body.To mitigate such deleterious effects,it is better to use lower dosages of them.However,this can result in a decline in the technique's effectiveness.To compensate for the lower dose of SNPs,one can use secondary method like electroporation to deliver SNPs directly into the cells and reinforces the effect of electric pulses due to the high electrical conductivity of SNPs while having a minimal cytotoxicity effect on normal cells that are not treated with electroporation.In the present study,synergism effects of both procedures(SNPs and electroporation)experimentally and theoretically are considered to investigate the property of each technique in increasing the performance with respect to both procedures'limitations.To investigate more,adaptive neuro-fuzzy inference system(ANFIS)is used to predict the percent cell viability of cancerous cells affected by both procedures by considering amplitude and duration as inputs affecting on change of cell viability as an output.The results obtained from both experimental and simulation procedures showed that the maximum synergism between nanoparticles and electric pulses was recorded at 700V/cm strength and 100μs duration.Also,Results indicated high correlation between observed and predicted data(r2=0.88).Moreover,the calculated root mean square error for the results of the ANFIS model was equal to 1.1.This implies that the model has practical value and can estimate the percent cell viability of cancerous cells influenced by both procedures with varying electric field amplitude and duration.This method can be proposed for other biophysical or drug delivery applications to save time and resources by utilizing the previous experimental data rather than performing more experiments. 展开更多
关键词 ELECTROPORATION Cancer cell adaptive neuro-fuzzy inference system NANOPARTICLE Drug delivery
原文传递
基于ANFIS的多AUV协同定位系统量测异常检测方法 被引量:1
15
作者 徐博 李盛新 +1 位作者 王连钊 王权达 《自动化学报》 EI CAS CSCD 北大核心 2023年第9期1951-1966,共16页
针对异常水声测距信息对多自主水下航行器(Autonomous underwater vehicles,AUV)协同定位系统的不利影响,以及传统故障检测方法在多水声测距信息交替混淆的情况下检测效率低的问题,提出一种基于自适应神经模糊推理系统(Adaptive neuro-f... 针对异常水声测距信息对多自主水下航行器(Autonomous underwater vehicles,AUV)协同定位系统的不利影响,以及传统故障检测方法在多水声测距信息交替混淆的情况下检测效率低的问题,提出一种基于自适应神经模糊推理系统(Adaptive neuro-fuzzy inference system,ANFIS)的量测异常检测方法.首先,分别建立与各水声测距系统相对应的ANFIS模型;然后,基于自适应容积卡尔曼滤波(Adaptive cubature Kalman filter,ACKF)和马氏距离构造反映量测异常的特征信息作为ANFIS的输入;其次,基于预定义的量测异常信息建立了初始混合数据库以训练ANFIS模型实现对量测异常的在线实时检测与隔离;最后,利用湖水实验数据进行了AUV协同定位仿真验证.实验结果表明该方法可以准确识别异常水声测距信息,与传统故障检测方法相比,误报率(False positive rate,FPR)与漏检率(False negative rate,FNR)均减少70%以上. 展开更多
关键词 自主水下航行器 协同定位 自适应神经模糊推理系统 水声测距 量测异常
下载PDF
基于ANFIS-PID的大运距矿石输送控制系统设计 被引量:1
16
作者 田博 段兰兰 +1 位作者 王虎军 王洋 《自动化仪表》 CAS 2023年第4期65-71,77,共8页
针对港口大运距分送式矿石输送控制系统调速不稳定造成堵料停机事故和系统运行能耗高的问题,设计了基于比例积分微分功能的自适应神经元模糊推理系统(ANFIS-PID)的大运距矿石输送控制系统。系统采用了ANFIS-PID,用于精确调节矿石输送系... 针对港口大运距分送式矿石输送控制系统调速不稳定造成堵料停机事故和系统运行能耗高的问题,设计了基于比例积分微分功能的自适应神经元模糊推理系统(ANFIS-PID)的大运距矿石输送控制系统。系统采用了ANFIS-PID,用于精确调节矿石输送系统的带速。讨论了系统实现的技术关键点。结合系统功能的实际需求,主要从系统的控制对象、网络总体结构设计、ANFIS-PID的程序优化设计、ANFIS-PID仿真对比试验分析、计算机监控系统设计等5个方面进行阐述。实际运行表明:该系统与传统矿石输送控制系统相比,具有带速调节精度高、运行能耗低、系统安全可靠等优点,实现了良好的节能调速效果。 展开更多
关键词 自适应神经元模糊推理系统 输送控制系统 比例积分微分 大运距 节能调速
下载PDF
Adaptive neuro-fuzzy interface system for gap acceptance behavior of right-turning vehicles at partially controlled T-intersections 被引量:1
17
作者 Jayant P.Sangole Gopal R.Patil 《Journal of Modern Transportation》 2014年第4期235-243,共9页
Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in Ind... Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models. 展开更多
关键词 Partially controlled intersections Gapacceptance adaptive neuro-fuzzy interface system(anfis - Membership function Receiver operatorcharacteristic (ROC) curves Precision-recall (PR) curves
下载PDF
基于ANFIS的高速列车制动控制仿真研究 被引量:12
18
作者 王卓 王艳辉 +1 位作者 贾利民 李平 《铁道学报》 EI CAS CSCD 北大核心 2005年第3期113-117,共5页
将自适应神经模糊推理系统应用到高速列车制动控制当中,实现了高速列车制动过程的智能控制,具有控制安全性好,停车误差小,同时在模拟人操作方面有很好的效果。并且在MATLAB环境中进行了仿真研究,将ANFIS与SIMULINK有机地结合在一起,充... 将自适应神经模糊推理系统应用到高速列车制动控制当中,实现了高速列车制动过程的智能控制,具有控制安全性好,停车误差小,同时在模拟人操作方面有很好的效果。并且在MATLAB环境中进行了仿真研究,将ANFIS与SIMULINK有机地结合在一起,充分地发挥了各自的优势,简化了仿真过程。仿真结果表明了该方法的有效性与正确性。 展开更多
关键词 高速列车 自适应神经模糊推理系统(anfis) 制动控制 仿真
下载PDF
基于ANFIS-GM的心墙堆石坝变形预测 被引量:10
19
作者 钟登华 刘昊元 +3 位作者 佟大威 刘玉玺 吴斌平 刘肖军 《水利水电技术》 CSCD 北大核心 2015年第3期1-6,16,共7页
本文提出采用自适应网络模糊推理系统(adaptive neuro-fuzzy inference system,ANFIS)优化灰色理论模型(Grey Model,GM)的建模方法来研究预测大坝变形。ANFIS-GM模型综合考虑了由于资料不完备、考虑因素不全面而产生的灰色特性和各影响... 本文提出采用自适应网络模糊推理系统(adaptive neuro-fuzzy inference system,ANFIS)优化灰色理论模型(Grey Model,GM)的建模方法来研究预测大坝变形。ANFIS-GM模型综合考虑了由于资料不完备、考虑因素不全面而产生的灰色特性和各影响因素与大坝变形之间存在的模糊特性。该模型相比于GM模型不仅考虑了大坝变形的灰色特性,而且还考虑了水位变化速率、填筑速率与大坝变形的模糊关系。通过心墙堆石坝沉降变形的实例分析,表明该模型比GM模型误差更小。同时,该模型具有处理小样本,自组织、自学习、自适应,模糊推理的综合能力。 展开更多
关键词 心墙堆石坝 大坝变形 灰色理论 自适应网络模糊推理系统 anfis-GM模型
下载PDF
减法聚类-ANFIS在网络故障诊断的应用研究 被引量:14
20
作者 蒋静芝 孟相如 +1 位作者 李欢 庄绪春 《计算机工程与应用》 CSCD 北大核心 2011年第8期76-78,86,共4页
提出了一种基于减法聚类-自适应模糊神经网络(ANFIS)的网络故障诊断建模方法。减法聚类算法生成初始模糊推理系统,ANFIS建立网络故障诊断原始模型,应用混合算法对模糊规则的参数进行训练并建立最终的模型。仿真实验表明基于减法聚类-AN... 提出了一种基于减法聚类-自适应模糊神经网络(ANFIS)的网络故障诊断建模方法。减法聚类算法生成初始模糊推理系统,ANFIS建立网络故障诊断原始模型,应用混合算法对模糊规则的参数进行训练并建立最终的模型。仿真实验表明基于减法聚类-ANFIS的建模方法是有效的;通过仿真结果比较,减法聚类-ANFIS的网络故障诊断能力及收敛速度均优于BP神经网络,更适合作为网络故障诊断模型。 展开更多
关键词 网络故障诊断 减法聚类 自适应模糊神经网络 模糊逻辑 神经网络
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部