An improved least mean square/fourth direct adaptive equalizer(LMS/F-DAE)is proposed in this paper for underwater acoustic communication in the Arctic.It is able to process complex-valued baseband signals and has bett...An improved least mean square/fourth direct adaptive equalizer(LMS/F-DAE)is proposed in this paper for underwater acoustic communication in the Arctic.It is able to process complex-valued baseband signals and has better equalization performance than LMS.Considering the sparsity feature of equalizer tap coefficients,an adaptive norm(AN)is incorporated into the cost function which is utilized as a sparse regularization.The norm constraint changes adaptively according to the amplitude of each coefficient.For small-scale coefficients,the sparse constraint exists to accelerate the convergence speed.For large-scale coefficients,it disappears to ensure smaller equalization error.The performance of the proposed AN-LMS/F-DAE is verified by the experimental data from the 9th Chinese National Arctic Research Expedition.The results show that compared with the standard LMS/F-DAE,AN-LMS/F-DAE can promote the sparse level of the equalizer and achieve better performance.展开更多
基金The National Natural Science Foundation of China under contract Nos 61631008 and 61901136the National Key Research and Development Program of China under contract No.2018YFC1405904+3 种基金the Fok Ying-Tong Education Foundation under contract No.151007the Heilongjiang Province Outstanding Youth Science Fund under contract No.JC2017017the Opening Funding of Science and Technology on Sonar Laboratory under contract No.6142109KF201802the Innovation Special Zone of National Defense Science and Technology.
文摘An improved least mean square/fourth direct adaptive equalizer(LMS/F-DAE)is proposed in this paper for underwater acoustic communication in the Arctic.It is able to process complex-valued baseband signals and has better equalization performance than LMS.Considering the sparsity feature of equalizer tap coefficients,an adaptive norm(AN)is incorporated into the cost function which is utilized as a sparse regularization.The norm constraint changes adaptively according to the amplitude of each coefficient.For small-scale coefficients,the sparse constraint exists to accelerate the convergence speed.For large-scale coefficients,it disappears to ensure smaller equalization error.The performance of the proposed AN-LMS/F-DAE is verified by the experimental data from the 9th Chinese National Arctic Research Expedition.The results show that compared with the standard LMS/F-DAE,AN-LMS/F-DAE can promote the sparse level of the equalizer and achieve better performance.