This paper presents the design,and validation of a new adaptive control system based on quasi-time delay estimation(Q-TDE)augmented with new integral second-order terminal sliding mode control(ISOTSMC)for a manipulato...This paper presents the design,and validation of a new adaptive control system based on quasi-time delay estimation(Q-TDE)augmented with new integral second-order terminal sliding mode control(ISOTSMC)for a manipulator robot with unknown dynamicuncertainty and disturbances.Contrary to the conventional[TDE,the proposed Q-TDE becomes sufficient to invoke a fixed artficial time delay and utilize the past data only of the control input to approximate the unknown system's dynamic uncertainties.The incorporating of new adaptive reachinglaw with ISOTSMCaugmented with Q-TDE policy ensures the continuous performance tracking of the robot manipulator's trajectories using output feedback.This combination may achieve high performance with a significant chattering reducing procedure.By utilizing the Lyapunov function theory,it can be demonstrated that the robot system is stable and all signals in closed-loop are converging in finite time.Consequently,Simulation and comparative studies with two degrees of freedom robot manipulator were carried out to validate the effectiveness of the designed control scheme.展开更多
文摘This paper presents the design,and validation of a new adaptive control system based on quasi-time delay estimation(Q-TDE)augmented with new integral second-order terminal sliding mode control(ISOTSMC)for a manipulator robot with unknown dynamicuncertainty and disturbances.Contrary to the conventional[TDE,the proposed Q-TDE becomes sufficient to invoke a fixed artficial time delay and utilize the past data only of the control input to approximate the unknown system's dynamic uncertainties.The incorporating of new adaptive reachinglaw with ISOTSMCaugmented with Q-TDE policy ensures the continuous performance tracking of the robot manipulator's trajectories using output feedback.This combination may achieve high performance with a significant chattering reducing procedure.By utilizing the Lyapunov function theory,it can be demonstrated that the robot system is stable and all signals in closed-loop are converging in finite time.Consequently,Simulation and comparative studies with two degrees of freedom robot manipulator were carried out to validate the effectiveness of the designed control scheme.