A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization f...A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm.展开更多
Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed...Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.展开更多
A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth,edge or detail texture region accor...A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth,edge or detail texture region according to variance-sum criteria function of the feature vectors. Then pa-rameters of GMM are calculated by using the statistical information of these feature vectors. GMM predicts the regularization parameter for each pixel adaptively. Hopfield Neural Network (Hopfield-NN) is used to optimize the objective function of image restoration,and network weight value matrix is updated by the output of GMM. Since GMM is used,the regularization parameters share properties of different kind of regions. In addition,the regularization parameters are different from pixel to pixel. GMM-based regularization method is consistent with human visual system,and it has strong gener-alization capability. Comparing with non-adaptive and some adaptive image restoration algorithms,experimental results show that the proposed algorithm obtains more preferable restored images.展开更多
Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of...Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of adjacent sources. To overcome this problem, we propose the regularized least-squares reverse time migration method (RLSRTM) using the singular spectrum analysis technique that imposes sparseness constraints on the inverted model. Additionally, the difference spectrum theory of singular values is presented so that RLSRTM can be implemented adaptively to eliminate the migration artifacts. With numerical tests on a fiat layer model and a Marmousi model, we validate the superior imaging quality, efficiency and convergence of RLSRTM compared with LSRTM when dealing with simultaneoussource data, incomplete data and noisy data.展开更多
Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presen...Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Backtracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each iteration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in reconstruction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.展开更多
A MANET is a cooperative network in which each node has dual responsibilities of forwarding and routing thus node strength is a major factor because a lesser number of nodes reduces network performance. The existing r...A MANET is a cooperative network in which each node has dual responsibilities of forwarding and routing thus node strength is a major factor because a lesser number of nodes reduces network performance. The existing reputation based methods have limitation due to their stricter punishment strategy because they isolate nodes from network participation having lesser reputation value and thus reduce the total strength of nodes in a network. In this paper we have proposed a mathematical model for the classification of nodes in MANETs using adaptive decision boundary. This model classifies nodes in two classes: selfish and regular node as well as it assigns the grade to individual nodes. The grade is computed by counting how many passes are required to classify a node and it is used to define the punishment strategy as well as enhances the reputation definition of traditional reputation based mechanisms. Our work provides the extent of noncooperation that a network can allow depending on the current strength of nodes for the given scenario and thus includes selfish nodes in network participation with warning messages. We have taken a leader node for reputation calculation and classification which saves energy of other nodes as energy is a major challenge of MANET. The leader node finally sends the warning message to low grade nodes and broadcasts the classification list in the MANET that is considered in the routing activity.展开更多
Existing research on image classification mainly used the artificial definition as the pre-training of the original image,which cost a lot of time on adjusting parameters.However,the depth of learning algorithm intend...Existing research on image classification mainly used the artificial definition as the pre-training of the original image,which cost a lot of time on adjusting parameters.However,the depth of learning algorithm intends to make the computers automatically choose the most suitable features in the training process.The substantial of deep learning is to train mass data and obtain an accurate classification or prediction without any artificial work by constructing a multi-hidden-layer model.However,current deep learning model has problems of local minimums when choosing a constant learning rate to solve non-convex objective cost function in model training.This paper proposes an algorithm based on the Stacked Denoising Autoencoders(SDA)to solve this problem,and gives a contrast of different layer designs to test the performance.A MNIST database of handwritten digits is used to verify the effectiveness of this model..展开更多
In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. ...In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. Using general HSlder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.展开更多
The adaptive regularization method is first proposed by Ryzhikov et al. for the deconvolution in elimination of multiples. This method is stronger than the Tikhonov regularization in the sense that itis adaptive, i.e....The adaptive regularization method is first proposed by Ryzhikov et al. for the deconvolution in elimination of multiples. This method is stronger than the Tikhonov regularization in the sense that itis adaptive, i.e. it eliminates the small eigenvalues of theadjoint operator when it is nearly singular. We will show in this paper that the adaptive regularization can be implemented iterately. Some properties of the proposed non-stationary iterated adaptive regularization method are analyzed. The rate of convergence for inexact data is proved. Therefore the iterative implementation of the adaptive regularization can yield optimality.展开更多
The adaptive regularization method is first proposed by Ryzhikov et al. in [6] for the deconvolution in elimination of multiples which appear frequently in geoscience and remote sensing. They have done experiments to ...The adaptive regularization method is first proposed by Ryzhikov et al. in [6] for the deconvolution in elimination of multiples which appear frequently in geoscience and remote sensing. They have done experiments to show that this method is very effective. This method is better than the Tikhonov regularization in the sense that it is adaptive, i.e., it automatically eliminates the small eigenvalues of the operator when the operator is near singular. In this paper, we give theoretical analysis about the adaptive regularization. We introduce an a priori strategy and an a posteriori strategy for choosing the regularization parameter, and prove regularities of the adaptive regularization for both strategies. For the former, we show that the order of the convergence rate can approach O(||n||^4v/4v+1) for some 0 〈 v 〈 1, while for the latter, the order of the convergence rate can be at most O(||n||^2v/2v+1) for some 0 〈 v 〈 1.展开更多
This paper developed a fast and adaptive method for SAR complex image denoising based on lk norm regularization, as viewed from parameters estimation. We firstly establish the relationship between denoising model and ...This paper developed a fast and adaptive method for SAR complex image denoising based on lk norm regularization, as viewed from parameters estimation. We firstly establish the relationship between denoising model and ill-posed inverse problem via convex half-quadratic regularization, and compare the difference between the estimator variance obtained from the iterative formula and biased CramerRao bound, which proves the theoretic flaw of the existent methods of parameter selection. Then, the analytic expression of the model solution as the function with respect to the regularization parameter is obtained. On this basis, we study the method for selecting the regularization parameter through minimizing mean-square error of estimators and obtain the final analytic expression, which resulted in the direct calculation, high processing speed, and adaptability. Finally, the effect of regularization parameter selection on the resolution of point targets is analyzed. The experiment results of simulation and real complex-valued SAR images illustrate the validity of the proposed method.展开更多
In recent years, variable selection based on penalty likelihood methods has aroused great concern. Based on the Gibbs sampling algorithm of asymmetric Laplace distribution, this paper considers the quantile regression...In recent years, variable selection based on penalty likelihood methods has aroused great concern. Based on the Gibbs sampling algorithm of asymmetric Laplace distribution, this paper considers the quantile regression with adaptive Lasso and Lasso penalty from a Bayesian point of view. Under the non-Bayesian and Bayesian framework, several regularization quantile regression methods are systematically compared for error terms with different distributions and heteroscedasticity. Under the error term of asymmetric Laplace distribution, statistical simulation results show that the Bayesian regularized quantile regression is superior to other distributions in all quantiles. And based on the asymmetric Laplace distribution, the Bayesian regularized quantile regression approach performs better than the non-Bayesian approach in parameter estimation and prediction. Through real data analyses, we also confirm the above conclusions.展开更多
基金supported by the National Natural Science Foundation of China(61571131 11604055)
文摘A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm.
基金National Natural Foundation of China(No.41971279)Fundamental Research Funds of the Central Universities(No.B200202012)。
文摘Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.
文摘A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth,edge or detail texture region according to variance-sum criteria function of the feature vectors. Then pa-rameters of GMM are calculated by using the statistical information of these feature vectors. GMM predicts the regularization parameter for each pixel adaptively. Hopfield Neural Network (Hopfield-NN) is used to optimize the objective function of image restoration,and network weight value matrix is updated by the output of GMM. Since GMM is used,the regularization parameters share properties of different kind of regions. In addition,the regularization parameters are different from pixel to pixel. GMM-based regularization method is consistent with human visual system,and it has strong gener-alization capability. Comparing with non-adaptive and some adaptive image restoration algorithms,experimental results show that the proposed algorithm obtains more preferable restored images.
基金financial support from the National Natural Science Foundation of China (Grant Nos. 41104069, 41274124)National Key Basic Research Program of China (973 Program) (Grant No. 2014CB239006)+2 种基金National Science and Technology Major Project (Grant No. 2011ZX05014-001-008)the Open Foundation of SINOPEC Key Laboratory of Geophysics (Grant No. 33550006-15-FW2099-0033)the Fundamental Research Funds for the Central Universities (Grant No. 16CX06046A)
文摘Simultaneous-source acquisition has been recog- nized as an economic and efficient acquisition method, but the direct imaging of the simultaneous-source data produces migration artifacts because of the interference of adjacent sources. To overcome this problem, we propose the regularized least-squares reverse time migration method (RLSRTM) using the singular spectrum analysis technique that imposes sparseness constraints on the inverted model. Additionally, the difference spectrum theory of singular values is presented so that RLSRTM can be implemented adaptively to eliminate the migration artifacts. With numerical tests on a fiat layer model and a Marmousi model, we validate the superior imaging quality, efficiency and convergence of RLSRTM compared with LSRTM when dealing with simultaneoussource data, incomplete data and noisy data.
基金Supported by the National Natural Science Foundation of China (No. 61073079)the Fundamental Research Funds for the Central Universities (2011JBM216,2011YJS021)
文摘Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Backtracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each iteration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in reconstruction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.
文摘A MANET is a cooperative network in which each node has dual responsibilities of forwarding and routing thus node strength is a major factor because a lesser number of nodes reduces network performance. The existing reputation based methods have limitation due to their stricter punishment strategy because they isolate nodes from network participation having lesser reputation value and thus reduce the total strength of nodes in a network. In this paper we have proposed a mathematical model for the classification of nodes in MANETs using adaptive decision boundary. This model classifies nodes in two classes: selfish and regular node as well as it assigns the grade to individual nodes. The grade is computed by counting how many passes are required to classify a node and it is used to define the punishment strategy as well as enhances the reputation definition of traditional reputation based mechanisms. Our work provides the extent of noncooperation that a network can allow depending on the current strength of nodes for the given scenario and thus includes selfish nodes in network participation with warning messages. We have taken a leader node for reputation calculation and classification which saves energy of other nodes as energy is a major challenge of MANET. The leader node finally sends the warning message to low grade nodes and broadcasts the classification list in the MANET that is considered in the routing activity.
基金supported by NSFC (Grant Nos. 61300181, 61202434)the Fundamental Research Funds for the Central Universities (Grant No. 2015RC23).
文摘Existing research on image classification mainly used the artificial definition as the pre-training of the original image,which cost a lot of time on adjusting parameters.However,the depth of learning algorithm intends to make the computers automatically choose the most suitable features in the training process.The substantial of deep learning is to train mass data and obtain an accurate classification or prediction without any artificial work by constructing a multi-hidden-layer model.However,current deep learning model has problems of local minimums when choosing a constant learning rate to solve non-convex objective cost function in model training.This paper proposes an algorithm based on the Stacked Denoising Autoencoders(SDA)to solve this problem,and gives a contrast of different layer designs to test the performance.A MNIST database of handwritten digits is used to verify the effectiveness of this model..
基金National Institute of Technology Karnataka, India, for the financial support
文摘In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. Using general HSlder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.
基金This work was supported by the research program of College of Arts and Science of Beijing Union University and SRF for ROCS,SEM.
文摘The adaptive regularization method is first proposed by Ryzhikov et al. for the deconvolution in elimination of multiples. This method is stronger than the Tikhonov regularization in the sense that itis adaptive, i.e. it eliminates the small eigenvalues of theadjoint operator when it is nearly singular. We will show in this paper that the adaptive regularization can be implemented iterately. Some properties of the proposed non-stationary iterated adaptive regularization method are analyzed. The rate of convergence for inexact data is proved. Therefore the iterative implementation of the adaptive regularization can yield optimality.
基金Supported by the Chinese Natural Science Foundation of Youth Fund (No. 10501051).
文摘The adaptive regularization method is first proposed by Ryzhikov et al. in [6] for the deconvolution in elimination of multiples which appear frequently in geoscience and remote sensing. They have done experiments to show that this method is very effective. This method is better than the Tikhonov regularization in the sense that it is adaptive, i.e., it automatically eliminates the small eigenvalues of the operator when the operator is near singular. In this paper, we give theoretical analysis about the adaptive regularization. We introduce an a priori strategy and an a posteriori strategy for choosing the regularization parameter, and prove regularities of the adaptive regularization for both strategies. For the former, we show that the order of the convergence rate can approach O(||n||^4v/4v+1) for some 0 〈 v 〈 1, while for the latter, the order of the convergence rate can be at most O(||n||^2v/2v+1) for some 0 〈 v 〈 1.
基金Supported by the National Natural Science Foundation of China (Grant No. 60572136)the Fundamental Research Fund of NUDT (Grant No.JC0702005)
文摘This paper developed a fast and adaptive method for SAR complex image denoising based on lk norm regularization, as viewed from parameters estimation. We firstly establish the relationship between denoising model and ill-posed inverse problem via convex half-quadratic regularization, and compare the difference between the estimator variance obtained from the iterative formula and biased CramerRao bound, which proves the theoretic flaw of the existent methods of parameter selection. Then, the analytic expression of the model solution as the function with respect to the regularization parameter is obtained. On this basis, we study the method for selecting the regularization parameter through minimizing mean-square error of estimators and obtain the final analytic expression, which resulted in the direct calculation, high processing speed, and adaptability. Finally, the effect of regularization parameter selection on the resolution of point targets is analyzed. The experiment results of simulation and real complex-valued SAR images illustrate the validity of the proposed method.
文摘In recent years, variable selection based on penalty likelihood methods has aroused great concern. Based on the Gibbs sampling algorithm of asymmetric Laplace distribution, this paper considers the quantile regression with adaptive Lasso and Lasso penalty from a Bayesian point of view. Under the non-Bayesian and Bayesian framework, several regularization quantile regression methods are systematically compared for error terms with different distributions and heteroscedasticity. Under the error term of asymmetric Laplace distribution, statistical simulation results show that the Bayesian regularized quantile regression is superior to other distributions in all quantiles. And based on the asymmetric Laplace distribution, the Bayesian regularized quantile regression approach performs better than the non-Bayesian approach in parameter estimation and prediction. Through real data analyses, we also confirm the above conclusions.