期刊文献+
共找到217篇文章
< 1 2 11 >
每页显示 20 50 100
Adaptive Short-Time Fractional Fourier Transform Based on Minimum Information Entropy 被引量:2
1
作者 Bing Deng Dan Jin Junbao Luan 《Journal of Beijing Institute of Technology》 EI CAS 2021年第3期265-273,共9页
Traditional short-time fractional Fourier transform(STFrFT)has a single and fixed window function,which can not be adjusted adaptively according to the characteristics of fre-quency and frequency change rate.In order ... Traditional short-time fractional Fourier transform(STFrFT)has a single and fixed window function,which can not be adjusted adaptively according to the characteristics of fre-quency and frequency change rate.In order to overcome the shortcomings,the STFrFT method with adaptive window function is proposed.In this method,the window function of STFrFT is ad-aptively adjusted by establishing a library containing multiple window functions and taking the minimum information entropy as the criterion,so as to obtain a time-frequency distribution that better matches the desired signal.This method takes into account the time-frequency resolution characteristics of STFrFT and the excellent characteristics of adaptive adjustment to window func-tion,improves the time-frequency aggregation on the basis of eliminating cross term interference,and provides a new tool for improving the time-frequency analysis ability of complex modulated sig-nals. 展开更多
关键词 short-time fractional fourier transform(STFrFT) adaptive algorithm minimum in-formation entropy
下载PDF
Application of short-time Fourier transform to high-rise frame structural-health monitoring based on change of inherent frequency over time
2
作者 郭少霞 PEI Qiang 《Journal of Chongqing University》 CAS 2017年第1期1-10,共10页
The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal... The high-rise frame structure has become more and more widespread, like its damage from the complication of the environment. The traditional method of damage detection, which is only suitable for the stationary signal, does not apply to a high-rise frame structure because its damage signal is non-stationary. Thus, this paper presents an application of the short-time Fourier transform(STFT) to damage detection of high-rise frame structures. Compared with the fast Fourier transform, STFT is found to be able to express the frequency spectrum property of the time interval using the signal within this interval. Application of STFT to analyzing a Matlab model and the shaking table test with a twelve-story frame-structure model reveals that there is a positive correlation between the slope of the frequency versus time and the damage level. If the slope is equal to or greater than zero, the structure is not damaged. If the slope is smaller than zero, the structure is damaged, and the less the slope is, the more serious the damage is. The damage results from calculation based on the Matlab model are consistent with those from the shaking table test, demonstrating that STFT can be a reliable tool for the damage detection of high-rise frame structures. 展开更多
关键词 short-time fourier transform fast fourier transform damage identification shaking table test time-frequency analysis
下载PDF
Adaptive Fourier Decomposition Based Time-Frequency Analysis 被引量:3
3
作者 Li-Ming Zhang 《Journal of Electronic Science and Technology》 2014年第2期201-205,共5页
The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. Thi... The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. This paper presents the principles of the AFD based time-frequency analysis in three aspects: instantaneous frequency analysis, frequency spectrum analysis, and the spectrogram analysis. An experiment is conducted and compared with the Fourier transform in convergence rate and short-time Fourier transform in time-frequency distribution. The proposed approach performs better than both the Fourier transform and short-time Fourier transform. 展开更多
关键词 adaptive fourier decomposition fourier transform instantaneous frequency time frequency analysis
下载PDF
FM interference suppression for PRC-CW radar based on adaptive STFT and time-varying filtering 被引量:9
4
作者 Zhao Zhao Xiangquan Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期219-223,共5页
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior... The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection. 展开更多
关键词 interference suppression frequency modulation in- terference adaptive short-time fourier transform (STFT) time- varying filtering pseudo random code continuous wave (PRC-CW) radar.
下载PDF
Adaptive Noise Cancellation Method Used for Wheel Speed Signal of Integrate ABS/ASR System 被引量:6
5
作者 马岳峰 刘昭度 +1 位作者 齐志权 崔海峰 《Journal of Beijing Institute of Technology》 EI CAS 2006年第2期144-147,共4页
A novel adaptive noise cancellation method for wheel speed signal of the anti-lock braking system/ anti-slip regulation(ABS/ASR) control system is proposed. Based on the spectrum distribution of vehicle's wheel spe... A novel adaptive noise cancellation method for wheel speed signal of the anti-lock braking system/ anti-slip regulation(ABS/ASR) control system is proposed. Based on the spectrum distribution of vehicle's wheel speed signal got from fast Fourier transform under various conditions, the high-pass filter is used to deal with original wheel speed signals sampled to get reference noise signal and the original wheel speed signals are used as adaptive filter's desired outputs. The difference between original signals and reference noise signals is used as the error signal for the adaptive FIR filter and also used as the whole adaptive noise cancellation system's final output. This method can obtain the noise signal on-line and is easy to use for. real control system, which is useful to improve the performance of integrate system ABS/ASR. 展开更多
关键词 ABS/ASR control system high-pass filter adaptive FIR filter fast fourier transform
下载PDF
Order selection in fractional Fourier transform based beamforming 被引量:5
6
作者 Muhammad Ishtiaq Ahmad 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期361-369,共9页
Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional p... Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional power spectra(FrFT moment) of the linear chirp signal.This method can adaptively determine the optimum FrFT order by maximizing the second-order central FrFT moment.This makes the desired chirp signal substantially concentrated whereas the noise is rejected considerably.This improves the mean square error minimization beamformer by reducing effectively the signal-noise cross terms due to the finite data length de-correlation operation.Simulation results show that the new method works well under a wide range of signal to noise ratio and signal to interference ratio. 展开更多
关键词 adaptive beamforming fractional fourier transform (FrFT) fractional moments chirp signal.
下载PDF
Theoretical analysis of adaptive harmonic window and its application in frequency extraction of vibration signal 被引量:9
7
作者 LI Shun-ming WANG Jin-rui LI Xiang-lian 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期241-250,共10页
The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andf... The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing. 展开更多
关键词 window function fourier transform filter harmonic wavelet adaptive vibration signal extraction
下载PDF
Estimation of structural modal parameters by fourier transform with an optimal window 被引量:1
8
作者 朱宏平 万信华 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第5期595-598,共4页
An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of th... An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of the spectrum and can be easily applied to the general case of time-varying signals. The evaluation of the proposed approach has been performed on measured time-varying signals from a suspension bridge model and a steel frame model whose data have the typical non-stationary characteristics. The numerical results show that the proposed approach can overcome some of the difficulties encountered in the classic Fourier transform technique and can achieve higher computation accuracy. 展开更多
关键词 short-time fourier transform optimal window length modal parameters engineering structures
下载PDF
基于自适应Fourier分解-同步提取变换的机械故障诊断方法 被引量:1
9
作者 陈子慧 李志农 +1 位作者 谷士鹏 程娟 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第4期139-145,共7页
传统的同步提取变换方法(synchronous extraction transform,SET)用于机械故障诊断时,要求多分量信号满足各相邻模态的瞬时频率差大于所选取的SET窗函数频率支撑范围的2倍,否则容易产生频率混叠,实际信号往往无法满足该条件。此外,信号... 传统的同步提取变换方法(synchronous extraction transform,SET)用于机械故障诊断时,要求多分量信号满足各相邻模态的瞬时频率差大于所选取的SET窗函数频率支撑范围的2倍,否则容易产生频率混叠,实际信号往往无法满足该条件。此外,信号受到噪声的影响,难以获得故障的瞬时频率。针对传统的同步提取变换在机械故障诊断中存在的不足,结合自适应Fourier分解(AFD)和同步提取变换的各自优点,提出了一种基于AFD-SET的机械故障诊断方法。该方法能够有效处理频率接近的非平稳信号,准确地表达信号的瞬时频率,并且具有很快的收敛速度。仿真结果表明,提出的方法能够有效解决传统SET方法中的频率混叠,并具有更高的时频聚集性。将提出的方法应用到滚动轴承故障诊断中,诊断结果表明,该算法正确有效,能够有效提取出故障信号的频率特征。 展开更多
关键词 同步提取变换(SET) 自适应fourier分解(AFD) 故障诊断 频率混叠 时频分析
下载PDF
自适应精简经验Ramanujan分解及其在复合故障诊断中的应用
10
作者 潘海洋 章颖 +2 位作者 程健 郑近德 童靳于 《电子学报》 EI CAS CSCD 北大核心 2024年第6期1989-1999,共11页
Ramanujan傅里叶模态分解采用低频向高频扫描的方式获取分量信号,易出现过量分解和信息分散的现象,致使分解分量不具有单一完整的状态信息.为了解决上述问题,论文提出了一种自适应精简经验Ramanujan分解(Adaptive Concise Empirical Ram... Ramanujan傅里叶模态分解采用低频向高频扫描的方式获取分量信号,易出现过量分解和信息分散的现象,致使分解分量不具有单一完整的状态信息.为了解决上述问题,论文提出了一种自适应精简经验Ramanujan分解(Adaptive Concise Empirical Ramanujan Decomposition,ACERD)方法.在ACERD方法中,采用功率谱密度获取分割频带,旨在进行准确的频带划分.同时,利用Ramanujan傅里叶变换提取每个分割频带所对应的模式分量,提高周期分量的识别能力,并获得具有单一周期特征信息的模式分量.通过复合故障仿真信号和实测信号分析,结果表明:ACERD方法具有优异的频带分割和周期脉冲特征提取能力,适用于复合故障诊断. 展开更多
关键词 自适应精简经验Ramanujan分解 功率谱密度 Ramanujan傅里叶变换 复合故障
下载PDF
基于自适应短时傅里叶变换的品质因子Q值估算方法
11
作者 赵锐锐 李勇军 +1 位作者 黄有晖 左安鑫 《石油物探》 CSCD 北大核心 2024年第5期981-992,共12页
品质因子Q是描述地下介质对地震波吸收衰减强弱程度的参数,同时也是地层含油气性的重要标志。在地震资料Q估算中,常用的方法是短时傅里叶变换方法,当窗函数被选定以后,其时频分辨率就固定了。针对该问题,提出一种自适应窗短时傅里叶变... 品质因子Q是描述地下介质对地震波吸收衰减强弱程度的参数,同时也是地层含油气性的重要标志。在地震资料Q估算中,常用的方法是短时傅里叶变换方法,当窗函数被选定以后,其时频分辨率就固定了。针对该问题,提出一种自适应窗短时傅里叶变换的方法,以获得更准确的瞬时中心频率,并利用峰值频移法来估算品质因子Q。首先,利用固定窗长的短时傅里叶变换来提取信号的瞬时中心频率作为初始频率;然后,根据初始频率自适应计算不同频率的窗长,并利用自适应窗长短时傅里叶变换来求取瞬时中心频率;最后,结合峰值频移法得到高分辨率的品质因子Q值。利用合成数据和实际数据进行了测试,结果表明,相比于固定时窗短时傅里叶变换方法,自适应短时傅里叶变换方法具有更好的时间和频率分辨率,可以获得更高分辨率的品质因子Q值。该结果可以为地下介质的研究提供更准确、可靠的工具,有助于更好地了解地下结构和油气资源分布情况。 展开更多
关键词 品质因子Q 短时傅里叶变换 窗函数 自适应 峰值频移法
下载PDF
无监督域适应迁移学习在旋转机械故障诊断中的应用 被引量:1
12
作者 周湘淇 付忠广 高玉才 《振动与冲击》 EI CSCD 北大核心 2024年第10期106-113,共8页
故障诊断在旋转机械领域具有重要的意义,而深度学习和迁移学习的发展为提高故障诊断的准确性和鲁棒性提供了新的途径。针对旋转机械故障诊断问题,提出了一种基于深度对抗神经网络(domain-adversarial neural network, DANN)和多核最大... 故障诊断在旋转机械领域具有重要的意义,而深度学习和迁移学习的发展为提高故障诊断的准确性和鲁棒性提供了新的途径。针对旋转机械故障诊断问题,提出了一种基于深度对抗神经网络(domain-adversarial neural network, DANN)和多核最大平均差异(multiple kernel maximum mean discrepancy, MK-MMD)的无监督域适应迁移学习方法。首先,收集了源工况和目标工况下的振动信号数据并通过快速傅里叶变换(fast Fourier transform, FFT)转化为频域信号。然后,构建了一个ResNeXt-50特征提取器,并使用DANN和MK-MMD方法进行特征映射和域适应,从而实现源工况到目标工况的迁移学习。试验结果表明,该方法能提高对故障特征的识别精度,且在不同工况下的迁移试验中具有更好的鲁棒性。 展开更多
关键词 旋转机械 故障诊断 快速傅里叶变换(FFT) 域适应 迁移学习
下载PDF
自适应窗口旋转优化短时傅里叶变换的变转速滚动轴承故障诊断
13
作者 赵一楠 剡昌锋 +3 位作者 孟佳东 王宗刚 王慧滨 吴黎晓 《振动工程学报》 EI CSCD 北大核心 2024年第6期1064-1076,共13页
针对短时傅里叶变换(STFT)中固定窗效应所导致的能量集中度不高的问题,提出了一种自适应窗口旋转优化短时傅里叶变换(AWROSTFT)的变转速滚动轴承故障诊断方法。通过变分模态分解(VMD)对原始振动信号进行降噪,并利用粒子群优化算法(PSO)... 针对短时傅里叶变换(STFT)中固定窗效应所导致的能量集中度不高的问题,提出了一种自适应窗口旋转优化短时傅里叶变换(AWROSTFT)的变转速滚动轴承故障诊断方法。通过变分模态分解(VMD)对原始振动信号进行降噪,并利用粒子群优化算法(PSO)解决了VMD参数选择困难的问题;利用切线思想对STFT中水平窗口自适应匹配一系列的旋转算子,使得窗口旋转方向接近甚至等于瞬时调频率,提高了时频表示的能量集中度;计算出谱峰检测法提取到的瞬时频率与转频的平均比值,将得到的结果与轴承的故障特征系数进行匹配,以此实现变转速工况下滚动轴承的故障诊断。仿真和实验的结果都表明,本文所提方法能够兼顾PSO-VMD和AWROST-FT的优势,通过切线思想自适应的旋转窗口使得信号与窗函数在全局上的夹角都为零,从而达到提高能量集中度和锐化时频脊线的目的,实现了变转速工况下滚动轴承的故障诊断。 展开更多
关键词 故障诊断 时频分析 自适应窗口旋转优化短时傅里叶变换 变分模态分解 变转速
下载PDF
基于双通道时频卷积神经网络的故障电弧检测
14
作者 向泽林 杨洋 +1 位作者 李平 阳世群 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期192-202,共11页
交流故障电弧产生的高温极易点燃周围的可燃材料,是引发电线火灾的重要原因之一.准确检测不同类型的故障电弧对于预防重大火灾事故的发生具有重要意义.然而故障电弧的复杂性与隐蔽性给检测方法带来了极大挑战.基于阈值和电流特征提取的... 交流故障电弧产生的高温极易点燃周围的可燃材料,是引发电线火灾的重要原因之一.准确检测不同类型的故障电弧对于预防重大火灾事故的发生具有重要意义.然而故障电弧的复杂性与隐蔽性给检测方法带来了极大挑战.基于阈值和电流特征提取的技术难以全面概括故障电弧的特征,而大多数基于深度神经网络的方法直接对电流信号进行特征学习,忽略了信号中的频率信息,从而导致泛化能力差的问题.对此,本文提出了基于时频特征学习的双通道时频卷积神经网络的故障电弧识别方法,设计了可学习的自适应离散小波变换,用于提取一维信号中的多尺度特征,同时通过短时傅里叶变换获取二维的时频图像特征,分别在这2种特征信号上进行卷积,最后将2个通道中学习的特征进行融合,用于分类预测.通过对故障电弧发生器采集到的3种工况下电弧电流信号进行性能评估,验证所提方法的有效性.实验结果表明,该方法与其他同类方法相比具有更高的电弧识别准确率,达到了97.91%. 展开更多
关键词 故障电弧 特征融合 双通道时频卷积神经网络 自适应离散小波分解 傅立叶变换
下载PDF
基于傅里叶变换的有源阻尼器虚拟电阻自适应方法
15
作者 吴栋 王雷 +2 位作者 盛从兵 秦爽 康兆年 《电器与能效管理技术》 2024年第9期64-70,80,共8页
为解决虚拟电阻值固定导致的有源阻尼器工作容量大、损耗大的问题,提出基于傅里叶变换的虚拟电阻自适应控制策略。以发生谐振稳定性现象的并网逆变器为对象,分析逆变器出现谐振的原因,通过设计有源阻尼器的虚拟电阻来校正系统的稳定性,... 为解决虚拟电阻值固定导致的有源阻尼器工作容量大、损耗大的问题,提出基于傅里叶变换的虚拟电阻自适应控制策略。以发生谐振稳定性现象的并网逆变器为对象,分析逆变器出现谐振的原因,通过设计有源阻尼器的虚拟电阻来校正系统的稳定性,最后根据傅里叶变换提取公共耦合点谐振电压分量,动态调节虚拟电阻值,使有源阻尼器在较低容量下工作,同时为系统提供合适的阻尼。仿真实验结果表明,采用所提策略能有效抑制公共耦合点电压的谐振,同时有效降低有源阻尼器的工作容量,提高有源阻尼器解决谐振问题的能力。 展开更多
关键词 有源阻尼器 弱电网 傅里叶变换 虚拟电阻自适应
下载PDF
基于FRFT的频域自适应匹配滤波器检测方法
16
作者 梁琴 胡鹏鹏 +1 位作者 陈洲 李捷 《舰船科学技术》 北大核心 2024年第5期69-73,共5页
针对浅海混响背景下频域自适应匹配滤波器检测性能下降的问题,提出基于分数阶傅里叶变换(FRFT)的频域自适应匹配滤波器检测方法,该方法利用模板匹配技术,采用滑动窗对接收信号进行最优阶次分数阶傅里叶变换,然后将此过程中得到的FRFT域... 针对浅海混响背景下频域自适应匹配滤波器检测性能下降的问题,提出基于分数阶傅里叶变换(FRFT)的频域自适应匹配滤波器检测方法,该方法利用模板匹配技术,采用滑动窗对接收信号进行最优阶次分数阶傅里叶变换,然后将此过程中得到的FRFT域图与参考信号最优阶次傅里叶变换FRFT域图进行匹配,将离差平方和作为评价相似度的指标,即对离差平方和最小值的位置进行滤波,并对滤波后的信号进行最优阶次分数阶傅里叶逆变换,从而实现混响背景下的目标检测。仿真结果表明,在信混比为-15dB的情况下,该算法可显著提高频域自适应匹配滤波器的检测性能。 展开更多
关键词 混响抑制 分数阶傅里叶变换 频域自适应匹配滤波器 信号检测
下载PDF
一种双基声呐直达波干扰抑制算法
17
作者 梁琴 胡鹏鹏 +2 位作者 陈洲 李捷 王婷婷 《声学技术》 CSCD 北大核心 2024年第4期585-592,共8页
针对双基声呐中强直达波干扰下目标检测性能下降的问题,提出了基于分数阶傅里叶变换域滤波的直达波抑制方法。该方法首先对发射信号进行纳托尔(Nuttall)窗加权,在接收端采用分数阶域置零滤波抑制直达波干扰,再通过频域自适应匹配滤波提... 针对双基声呐中强直达波干扰下目标检测性能下降的问题,提出了基于分数阶傅里叶变换域滤波的直达波抑制方法。该方法首先对发射信号进行纳托尔(Nuttall)窗加权,在接收端采用分数阶域置零滤波抑制直达波干扰,再通过频域自适应匹配滤波提取目标时延信息,从而实现直达波干扰下的目标检测。仿真结果表明,在目标回波与直达波干扰功率比为-23 dB的情况下,该算法可有效抑制直达波干扰,准确估计出目标时延,成功检测到目标。在目标运动时,该算法通过在分数阶域搜索最佳阶数估计出多普勒频偏,并对其做频偏补偿后的频域自适应匹配滤波检测,可显著提高频域自适应匹配滤波器的检测性能。 展开更多
关键词 直达波干扰 分数阶傅里叶变换 纳托尔(Nuttall)窗 频域自适应匹配滤波器
下载PDF
分数阶Fourier变换域中网络流量的自相似特性分析 被引量:1
18
作者 郭通 兰巨龙 +1 位作者 黄万伟 张震 《通信学报》 EI CSCD 北大核心 2013年第6期38-48,共11页
通过分析网络流量数据在FrFT域的统计特性发现,实际网络流量在FrFT域满足自相似性,进一步地,针对网络流量在FrFT域的"时域"和"频域"展开,分别给出了基于改进的整体经验模态分解—去趋势波动分析(MEEMD-DFA)的Hurst... 通过分析网络流量数据在FrFT域的统计特性发现,实际网络流量在FrFT域满足自相似性,进一步地,针对网络流量在FrFT域的"时域"和"频域"展开,分别给出了基于改进的整体经验模态分解—去趋势波动分析(MEEMD-DFA)的Hurst指数估计法以及基于加权最小二乘回归(WLSR)的Hurst指数自适应估计法。实验结果表明,相比于现有估值算法,MEEMD-DFA法具有较高的估计精度,但计算复杂度高;而FrFT自适应估计法则具有更优的估计顽健性,且计算复杂度较低,可作为一种实时在线估计真实网络数据Hurst指数的方法。 展开更多
关键词 自相似特性 分数阶fourier变换 HURST指数 整体经验模态分解 去趋势波动分析 加权最小二乘 自适应
下载PDF
Localization method of subsynchronous oscillation source based on high-resolution time-frequency distribution image and CNN
19
作者 Hui Liu Yundan Cheng +3 位作者 Yanhui Xu Guanqun Sun Rusi Chen Xiaodong Yu 《Global Energy Interconnection》 EI CSCD 2024年第1期1-13,共13页
The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identific... The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identification methods primarily analyze fixed-mode oscillations and rarely consider time-varying features,such as frequency drift,caused by the random volatility of wind farms when oscillations occur.This paper proposes a subsynchronous oscillation sourcelocalization method that involves an enhanced short-time Fourier transform and a convolutional neural network(CNN).First,an enhanced STFT is performed to secure high-resolution time-frequency distribution(TFD)images from the measured data of the generation unit ports.Next,these TFD images are amalgamated to form a subsynchronous oscillation feature map that serves as input to the CNN to train the localization model.Ultimately,the trained CNN model realizes the online localization of subsynchronous oscillation sources.The effectiveness and accuracy of the proposed method are validated via multimachine system models simulating forced and natural oscillation events using the Power Systems Computer Aided Design platform.Test results show that the proposed method can localize subsynchronous oscillation sources online while considering unpredictable fluctuations in wind farms,thus providing a foundation for oscillation suppression in practical engineering scenarios. 展开更多
关键词 Subsynchronous oscillation source localization Synchronous squeezing transform Enhanced short-time fourier transform Convolutional neural networks
下载PDF
SRMD:Sparse Random Mode Decomposition
20
作者 Nicholas Richardson Hayden Schaeffer Giang Tran 《Communications on Applied Mathematics and Computation》 EI 2024年第2期879-906,共28页
Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the... Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the spectrogram.The randomization is both in the time window locations and the frequency sampling,which lowers the overall sampling and computational cost.The sparsification of the spectrogram leads to a sharp separation between time-frequency clusters which makes it easier to identify intrinsic modes,and thus leads to a new data-driven mode decomposition.The applications include signal representation,outlier removal,and mode decomposition.On benchmark tests,we show that our approach outperforms other state-of-the-art decomposition methods. 展开更多
关键词 Sparse random features Signal decomposition short-time fourier transform
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部