In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a N...In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a Novel Adaptive Simulated Annealing (NASA) algorithm for constrained multi-objective optimization based on Archived Multi-objective Simulated Annealing (AMOSA). For han-dling multi-objective, NASA makes improverrents in three aspects: sub-iteration search, sub-archive and adaptive search, which effectively strengthen the stability and efficiency of the algorithnm For handling constraints, NASA introduces corresponding solution acceptance criterion. Furtherrrore, NASA has also been applied to optimize TD-LTE network perform-ance by adjusting antenna paranleters; it can achieve better extension and convergence than AMOSA, NS-GAII and MOPSO. Analytical studies and simulations indicate that the proposed NASA algorithm can play an important role in improving multi-objective optimi-zation performance.展开更多
A loop modeling method, adaptive simulated annealing, for ab initio prediction of protein loop structures, as an optimization problem of searching the global minimum of a given energy function, is proposed. An interfa...A loop modeling method, adaptive simulated annealing, for ab initio prediction of protein loop structures, as an optimization problem of searching the global minimum of a given energy function, is proposed. An interface-friendly toolbox—LoopModeller in Windows and Linux systems, VC++ and OpenGL environments is developed for analysis and visualization. Simulation results of three short-chain neurotoxins modeled by LoopModeller show that the method proposed is fast and efficient.展开更多
Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated ...Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated multi robot manipulators. Over the task space of a multi robot, a strategy of decoupled planning is also applied to the evolutionary process, which enables a multi robot to avoid falling into deadlock and calculating of composite C space. Finally, two representative tests are given to validate A SA GA and the strategy of decoupled planning.展开更多
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi...To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.展开更多
Purpose–The purpose of this paper is to employ stochastic techniques to increase efficiency of the classical algorithms for solving nonlinear optimization problems.Design/methodology/approach–The well-known simulate...Purpose–The purpose of this paper is to employ stochastic techniques to increase efficiency of the classical algorithms for solving nonlinear optimization problems.Design/methodology/approach–The well-known simulated annealing strategy is employed to search successive neighborhoods of the classical trust region(TR)algorithm.Findings–An adaptive formula for computing the TR radius is suggested based on an eigenvalue analysis conducted on the memoryless Broyden-Fletcher-Goldfarb-Shanno updating formula.Also,a(heuristic)randomized adaptive TR algorithm is developed for solving unconstrained optimization problems.Results of computational experiments on a set of CUTEr test problems show that the proposed randomization scheme can enhance efficiency of the TR methods.Practical implications–The algorithm can be effectively used for solving the optimization problems which appear in engineering,economics,management,industry and other areas.Originality/value–The proposed randomization scheme improves computational costs of the classical TR algorithm.Especially,the suggested algorithm avoids resolving the TR subproblems for many times.展开更多
Although lots of valuable results for fault diagnosis based on model have been achieved in linear system, it is difficult to apply these results to non-linear system due to the difficulty of modeling the non-linear sy...Although lots of valuable results for fault diagnosis based on model have been achieved in linear system, it is difficult to apply these results to non-linear system due to the difficulty of modeling the non-linear system by analysis. Adaptive Fuzzy system provides a way for solving this problem because it can approximate any non-linear system at any accuracy. The key for adaptive Fuzzy system to solve problem is its learning ability, so the authors present a learning algorithm for Adaptive fuzzy system, which can build the system's model by learning from the measurement data as well as experience knowledge with high accuracy. Furthermore, the experiment using the learning algorithm to model a servo-mechanism and to construct the fault diagnosis system based on the model is carried out, the results is very good.展开更多
Dynamic reliability is a very important issue in reliability research. The dynamic reliability analysis for the project is still in search of domestic and international research in the exploration stage. By now, dynam...Dynamic reliability is a very important issue in reliability research. The dynamic reliability analysis for the project is still in search of domestic and international research in the exploration stage. By now, dynamic reliability research mainly concentrates on the reliability assessment; the methods mainly include dynamic fault tree, extension of event sequence diagram and Monte Carlo simulation, and et al. The paper aims to research the dynamic reliability optimization. On the basis of analysis of the four quality influence factors in the construction engineering, a method based on gray correlation degree is employed to calculate the weights of factors affecting construction process quality. Then the weights are added into the reliability improvement feasible index (RIFI). Furthermore, a novel nonlinear programming mathematic optimization model is established. In the Insight software environment, the Adaptive Simulated Annealing (ASA) algorithm is used to get a more accurate construction subsystem optimal reliability under different RIFI conditions. In addition, the relationship between construction quality and construction system reliability is analyzed, the proposed methods and detailed processing can offer a useful reference for improving the construction system quality level.展开更多
Synthesis of functional nanostructures with the least number of tests is paramount towards the propelling materials development. However, the synthesis method containing multivariable leads to high uncertainty, exhaus...Synthesis of functional nanostructures with the least number of tests is paramount towards the propelling materials development. However, the synthesis method containing multivariable leads to high uncertainty, exhaustive attempts, and exorbitant manpower costs. Machine learning (ML) burgeons and provokes an interest in rationally designing and synthesizing materials. Here, we collect the dataset of nano-functional materials carbon dots (CDs) on synthetic parameters and optical properties. ML is applied to assist the synthesis process to enhance photoluminescence quantum yield (QY) by building the methodology named active adaptive method (AAM), including the model selection, max points screen, and experimental verification. An interactive iteration strategy is the first time considered in AAM with the constant acquisition of the furnished data by itself to perfect the model. CDs exhibit a strong red emission with QY up to 23.3% and enhancement of around 200% compared with the pristine value obtained through the AAM guidance. Furthermore, the guided CDs are applied as metal ions probes for Co^(2+) and Fe^(3+), with a concentration range of 0–120 and 0–150 µM, and their detection limits are 1.17 and 0.06 µM. Moreover, we also apply CDs for dental diagnosis and treatment using excellent optical ability. It can effectively detect early caries and treat mineralization combined with gel. The study shows that the error of experiment verification gradually decreases and QY improves double with the effective feedback loops by AAM, suggesting the great potential of utilizing ML to guide the synthesis of novel materials. Finally, the code is open-source and provided to be referenced for further investigation on the novel inorganic material prediction.展开更多
基金supported by the Major National Science & Technology Specific Project of China under Grants No.2010ZX03002-007-02,No.2009ZX03002-002,No.2010ZX03002-002-03
文摘In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a Novel Adaptive Simulated Annealing (NASA) algorithm for constrained multi-objective optimization based on Archived Multi-objective Simulated Annealing (AMOSA). For han-dling multi-objective, NASA makes improverrents in three aspects: sub-iteration search, sub-archive and adaptive search, which effectively strengthen the stability and efficiency of the algorithnm For handling constraints, NASA introduces corresponding solution acceptance criterion. Furtherrrore, NASA has also been applied to optimize TD-LTE network perform-ance by adjusting antenna paranleters; it can achieve better extension and convergence than AMOSA, NS-GAII and MOPSO. Analytical studies and simulations indicate that the proposed NASA algorithm can play an important role in improving multi-objective optimi-zation performance.
文摘A loop modeling method, adaptive simulated annealing, for ab initio prediction of protein loop structures, as an optimization problem of searching the global minimum of a given energy function, is proposed. An interface-friendly toolbox—LoopModeller in Windows and Linux systems, VC++ and OpenGL environments is developed for analysis and visualization. Simulation results of three short-chain neurotoxins modeled by LoopModeller show that the method proposed is fast and efficient.
文摘Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated multi robot manipulators. Over the task space of a multi robot, a strategy of decoupled planning is also applied to the evolutionary process, which enables a multi robot to avoid falling into deadlock and calculating of composite C space. Finally, two representative tests are given to validate A SA GA and the strategy of decoupled planning.
文摘To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.
基金the anonymous reviewers for their valuable comments and suggestions helped to improve the quality of this work.
文摘Purpose–The purpose of this paper is to employ stochastic techniques to increase efficiency of the classical algorithms for solving nonlinear optimization problems.Design/methodology/approach–The well-known simulated annealing strategy is employed to search successive neighborhoods of the classical trust region(TR)algorithm.Findings–An adaptive formula for computing the TR radius is suggested based on an eigenvalue analysis conducted on the memoryless Broyden-Fletcher-Goldfarb-Shanno updating formula.Also,a(heuristic)randomized adaptive TR algorithm is developed for solving unconstrained optimization problems.Results of computational experiments on a set of CUTEr test problems show that the proposed randomization scheme can enhance efficiency of the TR methods.Practical implications–The algorithm can be effectively used for solving the optimization problems which appear in engineering,economics,management,industry and other areas.Originality/value–The proposed randomization scheme improves computational costs of the classical TR algorithm.Especially,the suggested algorithm avoids resolving the TR subproblems for many times.
文摘Although lots of valuable results for fault diagnosis based on model have been achieved in linear system, it is difficult to apply these results to non-linear system due to the difficulty of modeling the non-linear system by analysis. Adaptive Fuzzy system provides a way for solving this problem because it can approximate any non-linear system at any accuracy. The key for adaptive Fuzzy system to solve problem is its learning ability, so the authors present a learning algorithm for Adaptive fuzzy system, which can build the system's model by learning from the measurement data as well as experience knowledge with high accuracy. Furthermore, the experiment using the learning algorithm to model a servo-mechanism and to construct the fault diagnosis system based on the model is carried out, the results is very good.
文摘Dynamic reliability is a very important issue in reliability research. The dynamic reliability analysis for the project is still in search of domestic and international research in the exploration stage. By now, dynamic reliability research mainly concentrates on the reliability assessment; the methods mainly include dynamic fault tree, extension of event sequence diagram and Monte Carlo simulation, and et al. The paper aims to research the dynamic reliability optimization. On the basis of analysis of the four quality influence factors in the construction engineering, a method based on gray correlation degree is employed to calculate the weights of factors affecting construction process quality. Then the weights are added into the reliability improvement feasible index (RIFI). Furthermore, a novel nonlinear programming mathematic optimization model is established. In the Insight software environment, the Adaptive Simulated Annealing (ASA) algorithm is used to get a more accurate construction subsystem optimal reliability under different RIFI conditions. In addition, the relationship between construction quality and construction system reliability is analyzed, the proposed methods and detailed processing can offer a useful reference for improving the construction system quality level.
基金the support from Beijing National Science Foundation(No.L222109)the Military Health Care Project(No.22BJZ22)+1 种基金Q.X.acknowledges the support from the National Natural Science Foundation of China(No.52211530034)the Beijing National Science Foundation(No.3222018).
文摘Synthesis of functional nanostructures with the least number of tests is paramount towards the propelling materials development. However, the synthesis method containing multivariable leads to high uncertainty, exhaustive attempts, and exorbitant manpower costs. Machine learning (ML) burgeons and provokes an interest in rationally designing and synthesizing materials. Here, we collect the dataset of nano-functional materials carbon dots (CDs) on synthetic parameters and optical properties. ML is applied to assist the synthesis process to enhance photoluminescence quantum yield (QY) by building the methodology named active adaptive method (AAM), including the model selection, max points screen, and experimental verification. An interactive iteration strategy is the first time considered in AAM with the constant acquisition of the furnished data by itself to perfect the model. CDs exhibit a strong red emission with QY up to 23.3% and enhancement of around 200% compared with the pristine value obtained through the AAM guidance. Furthermore, the guided CDs are applied as metal ions probes for Co^(2+) and Fe^(3+), with a concentration range of 0–120 and 0–150 µM, and their detection limits are 1.17 and 0.06 µM. Moreover, we also apply CDs for dental diagnosis and treatment using excellent optical ability. It can effectively detect early caries and treat mineralization combined with gel. The study shows that the error of experiment verification gradually decreases and QY improves double with the effective feedback loops by AAM, suggesting the great potential of utilizing ML to guide the synthesis of novel materials. Finally, the code is open-source and provided to be referenced for further investigation on the novel inorganic material prediction.