期刊文献+
共找到303篇文章
< 1 2 16 >
每页显示 20 50 100
Novel Adaptive Simulated Annealing Algorithm for Constrained Multi-Objective Optimization 被引量:4
1
作者 Chuai Gang Zhao Dan Sun Li 《China Communications》 SCIE CSCD 2012年第9期68-78,共11页
In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a N... In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a Novel Adaptive Simulated Annealing (NASA) algorithm for constrained multi-objective optimization based on Archived Multi-objective Simulated Annealing (AMOSA). For han-dling multi-objective, NASA makes improverrents in three aspects: sub-iteration search, sub-archive and adaptive search, which effectively strengthen the stability and efficiency of the algorithnm For handling constraints, NASA introduces corresponding solution acceptance criterion. Furtherrrore, NASA has also been applied to optimize TD-LTE network perform-ance by adjusting antenna paranleters; it can achieve better extension and convergence than AMOSA, NS-GAII and MOPSO. Analytical studies and simulations indicate that the proposed NASA algorithm can play an important role in improving multi-objective optimi-zation performance. 展开更多
关键词 simulated annealing constrained rmlti-objective optimizaztion adaptive sub-iteration search-ing sub-archive PARETO-OPTIMAL
下载PDF
Adaptive Simulated Annealing Based Protein Loop Modeling of Neurotoxins
2
作者 陈杰 黄丽娜 彭志红 《Journal of Beijing Institute of Technology》 EI CAS 2003年第4期337-341,共5页
A loop modeling method, adaptive simulated annealing, for ab initio prediction of protein loop structures, as an optimization problem of searching the global minimum of a given energy function, is proposed. An interfa... A loop modeling method, adaptive simulated annealing, for ab initio prediction of protein loop structures, as an optimization problem of searching the global minimum of a given energy function, is proposed. An interface-friendly toolbox—LoopModeller in Windows and Linux systems, VC++ and OpenGL environments is developed for analysis and visualization. Simulation results of three short-chain neurotoxins modeled by LoopModeller show that the method proposed is fast and efficient. 展开更多
关键词 LOOP energy function adaptive simulated annealing NEUROTOXIN
下载PDF
Adaptive genetic algorithm for path planning of loosely coordinated multi-robot manipulators 被引量:1
3
作者 高胜 赵杰 蔡鹤皋 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期72-76,共5页
Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated ... Adaptive genetic algorithm A SA GA, a novel algorithm, which can dynamically modify the parameters of Genetic Algorithms in terms of simulated annealing mechanism, is proposed for path planning of loosely coordinated multi robot manipulators. Over the task space of a multi robot, a strategy of decoupled planning is also applied to the evolutionary process, which enables a multi robot to avoid falling into deadlock and calculating of composite C space. Finally, two representative tests are given to validate A SA GA and the strategy of decoupled planning. 展开更多
关键词 multi robot path planning adaptive genetic algorithm simulated annealing decoupled planning
下载PDF
Fuzzy adaptive learning control network with sigmoid membership function 被引量:1
4
作者 邢杰 Xiao Deyun 《High Technology Letters》 EI CAS 2007年第3期225-229,共5页
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi... To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells. 展开更多
关键词 fuzzy adaptive learning control network (FALCON) topological structure learning algorithm sigmoid function gaussian function simulated annealing (SA)
下载PDF
A randomized nonmonotone adaptive trust region method based on the simulated annealing strategy for unconstrained optimization
5
作者 Saman Babaie-Kafaki Saeed Rezaee 《International Journal of Intelligent Computing and Cybernetics》 EI 2019年第3期389-399,共11页
Purpose–The purpose of this paper is to employ stochastic techniques to increase efficiency of the classical algorithms for solving nonlinear optimization problems.Design/methodology/approach–The well-known simulate... Purpose–The purpose of this paper is to employ stochastic techniques to increase efficiency of the classical algorithms for solving nonlinear optimization problems.Design/methodology/approach–The well-known simulated annealing strategy is employed to search successive neighborhoods of the classical trust region(TR)algorithm.Findings–An adaptive formula for computing the TR radius is suggested based on an eigenvalue analysis conducted on the memoryless Broyden-Fletcher-Goldfarb-Shanno updating formula.Also,a(heuristic)randomized adaptive TR algorithm is developed for solving unconstrained optimization problems.Results of computational experiments on a set of CUTEr test problems show that the proposed randomization scheme can enhance efficiency of the TR methods.Practical implications–The algorithm can be effectively used for solving the optimization problems which appear in engineering,economics,management,industry and other areas.Originality/value–The proposed randomization scheme improves computational costs of the classical TR algorithm.Especially,the suggested algorithm avoids resolving the TR subproblems for many times. 展开更多
关键词 Nonlinear programming simulated annealing adaptive radius Trust region method Unconstrained optimization
原文传递
Fault Diagnosis for Non-linear System Based On Adaptive Fuzzy System
6
作者 Hu Changhua Chen XinhaiSection 302, Xian Research Inst.Of Hi-tech Xian, 710025, P.R.ChinaCollege of Astronautical, Northwestern Polytechnical University Xi’an, 710072, P.R.China 《International Journal of Plant Engineering and Management》 1998年第3期23-28,共6页
Although lots of valuable results for fault diagnosis based on model have been achieved in linear system, it is difficult to apply these results to non-linear system due to the difficulty of modeling the non-linear sy... Although lots of valuable results for fault diagnosis based on model have been achieved in linear system, it is difficult to apply these results to non-linear system due to the difficulty of modeling the non-linear system by analysis. Adaptive Fuzzy system provides a way for solving this problem because it can approximate any non-linear system at any accuracy. The key for adaptive Fuzzy system to solve problem is its learning ability, so the authors present a learning algorithm for Adaptive fuzzy system, which can build the system's model by learning from the measurement data as well as experience knowledge with high accuracy. Furthermore, the experiment using the learning algorithm to model a servo-mechanism and to construct the fault diagnosis system based on the model is carried out, the results is very good. 展开更多
关键词 fault diagnosis adaptive fuzzy system simulation annealing non-linear system
下载PDF
基于ASAPSO算法的特钢配料成本优化模型研究
7
作者 章超 袁志祥 肖维民 《铁合金》 CAS 2023年第1期16-21,共6页
在特种钢材冶炼生产中,配料不仅影响生产成本,其准确性也关系冶炼特钢的品质和成功率。针对配料在保证冶炼成功的前提下尽量减少成本问题,提出了基于自适应模拟退火粒子群(ASAPSO)算法的特钢配料成本优化模型。首先以物料守恒为基础,考... 在特种钢材冶炼生产中,配料不仅影响生产成本,其准确性也关系冶炼特钢的品质和成功率。针对配料在保证冶炼成功的前提下尽量减少成本问题,提出了基于自适应模拟退火粒子群(ASAPSO)算法的特钢配料成本优化模型。首先以物料守恒为基础,考虑中频炉冶炼工艺约束并结合冶金反应工程理论,建立以最低配料成本为目标的最优化模型。然后采用ASAPSO算法对模型求解,并对比粒子群算法、遗传算法和差分进化算法的求解结果,实验结果表明:ASAPSO算法的总体性能优于粒子群算法,其解的平均值和标准差优于其他三个算法,求解结果更稳定,可为企业实际配料生产提供一定的参考意义。 展开更多
关键词 配料 物料守恒 工艺约束 自适应模拟退火粒子群
下载PDF
Reliability analysis on civil engineering project based on integrated adaptive simulation annealing and gray correlation method 被引量:3
8
作者 Xiao-ping BAI Ya-nan LIU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2016年第4期462-471,共10页
Dynamic reliability is a very important issue in reliability research. The dynamic reliability analysis for the project is still in search of domestic and international research in the exploration stage. By now, dynam... Dynamic reliability is a very important issue in reliability research. The dynamic reliability analysis for the project is still in search of domestic and international research in the exploration stage. By now, dynamic reliability research mainly concentrates on the reliability assessment; the methods mainly include dynamic fault tree, extension of event sequence diagram and Monte Carlo simulation, and et al. The paper aims to research the dynamic reliability optimization. On the basis of analysis of the four quality influence factors in the construction engineering, a method based on gray correlation degree is employed to calculate the weights of factors affecting construction process quality. Then the weights are added into the reliability improvement feasible index (RIFI). Furthermore, a novel nonlinear programming mathematic optimization model is established. In the Insight software environment, the Adaptive Simulated Annealing (ASA) algorithm is used to get a more accurate construction subsystem optimal reliability under different RIFI conditions. In addition, the relationship between construction quality and construction system reliability is analyzed, the proposed methods and detailed processing can offer a useful reference for improving the construction system quality level. 展开更多
关键词 civil engineering dynamic reliability grey relational degree adaptive simulated annealing algorithm
原文传递
自适应状态转移模拟退火算法及其应用 被引量:2
9
作者 徐博 韩晓霞 +3 位作者 董颖超 卢佳振 武晋德 张文杰 《计算机应用研究》 CSCD 北大核心 2024年第1期150-158,共9页
状态转移模拟退火算法(STASA)作为解决复杂优化问题的有效方法,其搜索效率依赖于搜索算子和参数值的选择,在一些高维复杂问题上出现效率低下的问题。提出一种自适应状态转移模拟退火算法(ASTSA),通过自适应算子和参数选择策略来提高算... 状态转移模拟退火算法(STASA)作为解决复杂优化问题的有效方法,其搜索效率依赖于搜索算子和参数值的选择,在一些高维复杂问题上出现效率低下的问题。提出一种自适应状态转移模拟退火算法(ASTSA),通过自适应算子和参数选择策略来提高算法的适用性和求解效率;借鉴群智能算法的均值更新方法对平移算子进行改进,增强算子的搜索特性。通过23个基准测试函数和8个工程设计问题进行实验验证并与其他算法对比,证明了ASTSA算法和改进策略的有效性。 展开更多
关键词 状态转移模拟退火算法 自适应策略 连续优化问题 工程设计问题
下载PDF
SA765Gr.Ⅱ合金钢热拉伸本构模型的参数反求
10
作者 杨圳 陈学文 +4 位作者 苏志毅 孙佳伟 周正 毛怡然 周旭东 《材料热处理学报》 CAS CSCD 北大核心 2024年第6期165-173,共9页
在温度为950~1150℃,应变速率为0.01~5 s^(-1)的条件下,使用Gleeble-1500D热模拟实验机对SA765Gr.Ⅱ合金钢进行了等温热拉伸实验以研究其热拉伸变形行为。首先通过线性回归方法推导了SA765Gr.Ⅱ合金钢的Norton-Hoff模型参数,之后提出了... 在温度为950~1150℃,应变速率为0.01~5 s^(-1)的条件下,使用Gleeble-1500D热模拟实验机对SA765Gr.Ⅱ合金钢进行了等温热拉伸实验以研究其热拉伸变形行为。首先通过线性回归方法推导了SA765Gr.Ⅱ合金钢的Norton-Hoff模型参数,之后提出了一种基于自适应模拟退火(ASA)算法求解本构模型参数的方法(反求方法)。结果表明:相比于回归方法,反求方法构建的模型预测相关系数R从0.9831提高到0.9958、均方根误差RMAE由6.392降低至3.603、平均相对误差AARE由5.38%降低至3.69%。线性回归方法构建的模型预测误差期望与标准偏差分别为0.97和8.76,反求方法构建的模型预测误差期望与标准偏差分别为0.13和5.14。通过反求方法构建的Norton-Hoff模型预测精度得到了提高。 展开更多
关键词 SA765Gr.Ⅱ合金钢 Norton-Hoff模型 自适应模拟退火算法 反求方法
下载PDF
采用改进北方苍鹰算法的微电网优化调度研究 被引量:2
11
作者 陈将宏 王羲沐 +2 位作者 李伟亮 李雪莲 袁腾 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第1期281-289,共9页
微电网系统通常由多种分布式电源组成,为降低运行成本,常使用智能算法对微电网进行调度。智能算法在求解微电网调度模型时容易陷入局部最优解,导致求解精度差,因此在北方苍鹰算法的基础上,提出了一种混合策略改进的北方苍鹰算法(HNGO),... 微电网系统通常由多种分布式电源组成,为降低运行成本,常使用智能算法对微电网进行调度。智能算法在求解微电网调度模型时容易陷入局部最优解,导致求解精度差,因此在北方苍鹰算法的基础上,提出了一种混合策略改进的北方苍鹰算法(HNGO),利用反向学习、Metropolies准则以及自适应t分布变异提高求解精度,同时构建了考虑可再生能源出力特性的需求响应模型,使负荷曲线与可再生能源出力曲线更贴近,然后建立日运行成本最低的微电网优化调度模型,并利用HNGO求解。对比仿真结果显示所提算法具有更好的求解精度,且所提需求响应模型能显著降低燃料成本。 展开更多
关键词 北方苍鹰算法 反向学习 模拟退火算法 自适应t分布变异 需求响应
下载PDF
多车场带时间窗车辆路径问题的改良自适应大邻域搜索算法
12
作者 李焱 潘大志 郑思情 《计算机应用》 CSCD 北大核心 2024年第6期1897-1904,共8页
针对多车场带时间窗车辆路径问题(MDVRPTW),提出一种改良自适应大邻域搜索算法(IALNS)。首先,在构造初始解阶段改进一种路径分割算法;其次,在优化阶段利用设计的移除和修复启发式算子相互竞争择优选取算子,为各算子引入评分机制,采用轮... 针对多车场带时间窗车辆路径问题(MDVRPTW),提出一种改良自适应大邻域搜索算法(IALNS)。首先,在构造初始解阶段改进一种路径分割算法;其次,在优化阶段利用设计的移除和修复启发式算子相互竞争择优选取算子,为各算子引入评分机制,采用轮盘赌方式选取启发式算子;同时,将迭代周期分段,动态调整各周期内的算子权重信息,有效避免算法陷入局部最优;最后,采取模拟退火机制作为解的接受准则。在Cordeau规范算例上进行实验,确定IALNS的相关参数,将所提算法求解结果与该领域其他代表性研究成果对比。实验结果表明,所提算法与变邻域搜索(VNS)算法的求解误差不超过0.8%,在某些算例上甚至更优;与多相位改进的蛙跳算法相比,算法的平均耗时减少12.8%,所提算法在绝大多数算例上运行时间更短。因此,验证了所提算法是求解MDVRPTW的有效算法。 展开更多
关键词 多车场带时间窗车辆路径问题 自适应大邻域搜索 序列分割 自适应权重 模拟退火
下载PDF
基于命中的机场航班中转衔接性优化
13
作者 吕洋洋 叶志坚 《科学技术与工程》 北大核心 2024年第11期4784-4792,共9页
为解决目前中国机场中转衔接效率不高的问题,通过分析影响机场航班中转衔接性的因素,基于航班波的理论定义命中的概念及其计算方法,构建了以枢纽一日中转衔接命中数最大化为目标,同时考虑时间约束、绕航约束和跑道容量约束的时刻调整模... 为解决目前中国机场中转衔接效率不高的问题,通过分析影响机场航班中转衔接性的因素,基于航班波的理论定义命中的概念及其计算方法,构建了以枢纽一日中转衔接命中数最大化为目标,同时考虑时间约束、绕航约束和跑道容量约束的时刻调整模型。设计自适应模拟退火遗传算法对模型进行求解,在自适应遗传算法中引入模拟退火的思想提高算法的全局搜索能力和收敛速度,并与传统遗传算法和模拟退火算法进行对比。对首都机场一日起降航班数据进行实证分析,分别求解出3种时间窗调整时长下的最优命中数,并迭代出相应的航班时刻表。结果表明,改进算法能在更短时间内获得较高质量的近优解,优化后的航班时刻呈现出明显的波形结构,机场的中转衔接性能得到了有效提升。 展开更多
关键词 航班波 中转衔接性 时刻调整模型 自适应遗传算法 模拟退火
下载PDF
一种舰船高精度感应磁场快速正演建模方法
14
作者 何保委 孙兆龙 +2 位作者 刘月林 周国华 唐烈峥 《电工技术学报》 EI CSCD 北大核心 2024年第6期1589-1601,共13页
为了解决矢量积分方程法计算舰船感应磁场时效率较低和计算量较大的问题,提出一种基于简化标量磁位的积分方程正演模型,并引入多层自适应交叉近似(MLACA)算法,不仅能够保证磁场计算精度,还能大幅减少计算机的内存需求和计算时间。数值... 为了解决矢量积分方程法计算舰船感应磁场时效率较低和计算量较大的问题,提出一种基于简化标量磁位的积分方程正演模型,并引入多层自适应交叉近似(MLACA)算法,不仅能够保证磁场计算精度,还能大幅减少计算机的内存需求和计算时间。数值仿真表明,使用基于MLACA的标量积分方程法能够快速获取高精度的铁磁物体感应磁场。针对舰船铁磁材料的磁性参数不易获取的问题,基于磁场实测值和正演耦合模型,以磁场拟合度、磁化率先验分布和光滑约束条件为目标函数建立磁化率反演模型,并采用模拟退火(SA)算法优化得到等效磁化率的空间分布。球壳数值仿真和船模试验结果表明,磁化率反演优化模型有效可行,其中球壳磁场的预测误差为2.2%,船模磁场的预测误差约为4.8%。 展开更多
关键词 舰船磁场 简化标量磁位 多层自适应交叉近似 模拟退火法 等效磁化率
下载PDF
Expediting carbon dots synthesis by the active adaptive method with machine learning and applications in dental diagnosis and treatment
15
作者 Yaoyao Tang Quan Xu +3 位作者 Xinyao Zhang Rongye Zhu Nuo Zhao Juncheng Wang 《Nano Research》 SCIE EI CSCD 2024年第11期10109-10118,共10页
Synthesis of functional nanostructures with the least number of tests is paramount towards the propelling materials development. However, the synthesis method containing multivariable leads to high uncertainty, exhaus... Synthesis of functional nanostructures with the least number of tests is paramount towards the propelling materials development. However, the synthesis method containing multivariable leads to high uncertainty, exhaustive attempts, and exorbitant manpower costs. Machine learning (ML) burgeons and provokes an interest in rationally designing and synthesizing materials. Here, we collect the dataset of nano-functional materials carbon dots (CDs) on synthetic parameters and optical properties. ML is applied to assist the synthesis process to enhance photoluminescence quantum yield (QY) by building the methodology named active adaptive method (AAM), including the model selection, max points screen, and experimental verification. An interactive iteration strategy is the first time considered in AAM with the constant acquisition of the furnished data by itself to perfect the model. CDs exhibit a strong red emission with QY up to 23.3% and enhancement of around 200% compared with the pristine value obtained through the AAM guidance. Furthermore, the guided CDs are applied as metal ions probes for Co^(2+) and Fe^(3+), with a concentration range of 0–120 and 0–150 µM, and their detection limits are 1.17 and 0.06 µM. Moreover, we also apply CDs for dental diagnosis and treatment using excellent optical ability. It can effectively detect early caries and treat mineralization combined with gel. The study shows that the error of experiment verification gradually decreases and QY improves double with the effective feedback loops by AAM, suggesting the great potential of utilizing ML to guide the synthesis of novel materials. Finally, the code is open-source and provided to be referenced for further investigation on the novel inorganic material prediction. 展开更多
关键词 machine learning simulated annealing active adaptive method carbon dots Ions detection dental diagnosis and treatment
原文传递
各向异性超弹性的皮肤本构模型参数识别方法研究
16
作者 温广全 纪小刚 +1 位作者 李华彬 孙榕 《应用力学学报》 CAS CSCD 北大核心 2024年第4期948-955,共8页
通过力学建模方法对病人皮肤组织疾病进行诊断、评估和治疗,需要准确识别皮肤组织的力学性能。为此,提出了一种运用自适应模拟退火优化算法结合代理模型技术的皮肤组织本构参数识别方法。首先,采用有限元方法模拟皮肤单轴拉伸试验,获取... 通过力学建模方法对病人皮肤组织疾病进行诊断、评估和治疗,需要准确识别皮肤组织的力学性能。为此,提出了一种运用自适应模拟退火优化算法结合代理模型技术的皮肤组织本构参数识别方法。首先,采用有限元方法模拟皮肤单轴拉伸试验,获取不同参数组合下,皮肤组织的数值计算力学响应数据。为提高参数识别的计算效率,分别构建了响应面模型、克里金模型、椭球基神经网络3种代理模型来代替重复的仿真计算过程,并采用决定系数R 2对3种代理模型的拟合精度进行校验。最后,利用自适应模拟退火优化算法,以试验曲线与数值计算曲线均方根误差最小为优化目标,通过反演识别出了与普通家猪腹肋部皮肤组织单轴拉伸试验结果最匹配的本构参数:C_(10)=0.1401 MPa、k_(1)=24.51 MPa、k_(2)=0.4961、κ=0.3171、φ=13.86°。结果表明,椭球基神经网络模型更适合拟合皮肤本构模型参数与应力应变响应间的非线性关系。对比识别出的数值计算曲线与试验曲线,表明自适应模拟退火算法结合代理模型技术是识别皮肤组织各向异性超弹性本构参数的快速、可靠方法。 展开更多
关键词 皮肤力学 参数识别 代理模型 自适应模拟退火算法
下载PDF
基于遗传模拟退火算法的子阵级自适应波束形成
17
作者 刘子敬 陈曦 +1 位作者 施庆展 崔开博 《电讯技术》 北大核心 2024年第9期1480-1485,共6页
在阵列天线信号处理中,采用子阵级自适应波束形成技术可以降低算法复杂度和系统成本。针对子阵级自适应波束形成中最优子阵划分问题,提出了一种基于遗传模拟退火算法的阵列天线子阵最优划分方法。通过线性约束最小方差算法计算不同子阵... 在阵列天线信号处理中,采用子阵级自适应波束形成技术可以降低算法复杂度和系统成本。针对子阵级自适应波束形成中最优子阵划分问题,提出了一种基于遗传模拟退火算法的阵列天线子阵最优划分方法。通过线性约束最小方差算法计算不同子阵划分下的自适应权矢量,形成自适应天线方向图,以方向图的最大旁瓣电平比作为成本函数,迭代优化得到最大旁瓣电平最优的子阵划分形式。仿真结果表明,使用该方法得到的非均匀子阵划分阵列天线其自适应方向图最大旁瓣电平能降低至-19 dB。通过对比分析不同子阵划分形式以及不同规模阵面的自适应方向图验证了该方法的可行性与有效性。 展开更多
关键词 阵列天线 子阵划分 自适应波束形成 遗传模拟退火
下载PDF
基于改进粒子群算法的湿法冶金技术优化控制
18
作者 李晓冉 焦烜 +3 位作者 李晖 邓敏清 颜靖 刘振峰 《黄金》 CAS 2024年第7期39-45,共7页
分析了湿法冶金技术的关键工艺,构建了优化控制模型,并利用自适应惯性权重和模拟退火算子对粒子群算法进行改进,对湿法冶金技术进行优化控制。仿真试验结果显示:在A风力发电场优化数据集中测试中,AIW-SAO-PSO算法迭代225次时趋于稳定,... 分析了湿法冶金技术的关键工艺,构建了优化控制模型,并利用自适应惯性权重和模拟退火算子对粒子群算法进行改进,对湿法冶金技术进行优化控制。仿真试验结果显示:在A风力发电场优化数据集中测试中,AIW-SAO-PSO算法迭代225次时趋于稳定,适应度值约为0.165,且迭代100次时,算法的均方根误差、平均绝对误差、相对标准偏差分别为0.0080,0.0045和0.971%;在湿法冶金技术优化控制模型的寻优求解中,得到的综合效益值为1.9×10^(5)元/h,与目标期待值的绝对误差约为0.1×10^(4)元/h。实现了湿法冶金技术的优化控制,并为同类型优化控制提供理论支持。 展开更多
关键词 湿法冶金 模拟退火算子 自适应惯性权重因子 粒子群算法 优化控制 仿真试验
下载PDF
基于Pignistic概率距离的证据源组合新方法
19
作者 陈秀嘉 张晋武 陈娟 《指挥控制与仿真》 2024年第5期85-91,共7页
DS理论在决策级信息融合中有广泛应用。针对DS理论进行证据源组合时可能导致的“一票否决”和“信任偏移”问题,以及证据源内焦元间的关联和冲突问题,提出了一种有效处理冲突证据源的组合方法。新方法用自冲突和互冲突来描述证据源组合... DS理论在决策级信息融合中有广泛应用。针对DS理论进行证据源组合时可能导致的“一票否决”和“信任偏移”问题,以及证据源内焦元间的关联和冲突问题,提出了一种有效处理冲突证据源的组合方法。新方法用自冲突和互冲突来描述证据源组合中的全局冲突,在Pignistic概率距离基础上给出基于退火自适应变异算法的自冲突修正方法,然后根据Pignistic相似度提出互冲突的修正方法,最后运用DST组合规则得到识别结果。仿真算例验证了所提方法的合理有效性。 展开更多
关键词 目标识别 DS理论 证据源组合 Pignistic概率距离 退火自适应变异算法
下载PDF
多策略混合的天鹰优化器
20
作者 刘香怡 梁宏涛 朱洁 《计算机测量与控制》 2024年第8期295-303,共9页
为了解决天鹰优化器集中在全局搜索导致的局部寻优能力略差、依赖初始种群质量和易陷入局部最优的问题,提出一种多策略混合的天鹰优化器;该算法利用改进的Hooke-jeeves优化基本天鹰优化器的初始化种群质量;引入模拟退火概率对易陷入局... 为了解决天鹰优化器集中在全局搜索导致的局部寻优能力略差、依赖初始种群质量和易陷入局部最优的问题,提出一种多策略混合的天鹰优化器;该算法利用改进的Hooke-jeeves优化基本天鹰优化器的初始化种群质量;引入模拟退火概率对易陷入局部最优解进行改进;自适应权重提高前期全局搜索效率,延缓后期局部搜索速度,避免在正解附近徘徊;选取12个基准测试函数进行实验,并将MAO应用于风力发电预测模型优化;实验结果表明,对于单峰函数、多峰函数和固定维函数,MAO比AO等对比函数具有更快的收敛速度和更高的精度;在春夏秋冬数据集上进行仿真实验,对比其他模型1月和10月预测精度提高了15%,4月和8月的预测曲线更加平滑;证实了MAO对于提高风电预测的精度和速度的可行性和实用性。 展开更多
关键词 天鹰优化器 Hooke-Jeeves算法 模拟退火 自适应权重 风电预测
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部