To satisfy the request of wireless communication for new generation communication system, a new scheme consisting of a combination of adaptive technology and space-time code-OFDM is presented. The proposed method, exp...To satisfy the request of wireless communication for new generation communication system, a new scheme consisting of a combination of adaptive technology and space-time code-OFDM is presented. The proposed method, exploits adaptive bit allocation scheme over multipath fading channel. Numerical simulations have shown that the proposed scheme can greatly improve the performance of non-adaptive STBC-OFDM system.展开更多
A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then con...A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.展开更多
An efficient LDPC-coded multi-relay cooperation architecture is proposed based on virtual vertical Bell Labs layered space-time (V-BLAST) processing for uplink communication, where minimum-mean-square-error (MMSE)...An efficient LDPC-coded multi-relay cooperation architecture is proposed based on virtual vertical Bell Labs layered space-time (V-BLAST) processing for uplink communication, where minimum-mean-square-error (MMSE) and BP-based joint iterative decoding based on the introduced muhi-layer Tanner graph are effectively de- signed to detect and decode the corrupted received sequence at the destination. By introducing V-BLAST transmis- sion to the coded multi-relay cooperation, relays send their streams of symbols simultaneously, which increases the data rate and significantly reduces the transmission delay. The theoretical analysis and numerical results show that the new LDPC coded cooperation scheme outperforms the coded non-cooperation under the same code rate, and it also achieves a good trade-off among the performance, signal delay, and the encoding complexity associated with the number of relays. The performance gain can be credited to the proposed V-BLAST processing architecture and BP-based joint iterative decoding by the introduced multi-layer Tanner graph at a receiver-side.展开更多
An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing s...An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.展开更多
In wireless relaying networks, the traditional incremental cooperative relaying scheme (IR) could improve the system throughput enormously over fading channels by exploiting relay nodes to retransmit the source data p...In wireless relaying networks, the traditional incremental cooperative relaying scheme (IR) could improve the system throughput enormously over fading channels by exploiting relay nodes to retransmit the source data packet to the destination. In order to enhance the system throughput over time-varying fading channels, this paper proposes an adaptive incremental cooperative re-laying scheme (AIR) based on adaptive modulation and coding, which implements adaptive rate transmission for the source and relay nodes according to channel state information. We derive expressions for the AIR system throughput, and then give a gradient-based search algorithm to find the optimized adaptive solution for the AIR system by maximizing throughput subject to the constraint of packet error rate at the data link layer. The results indicate that throughput of AIR system outperforms that of traditional IR system greatly for any SNR value.展开更多
Precoding and space-time block coding (STBC)techniques using the uniform channel decomposition (UCD)are proposed to improve the bit error rate (BER) of themultiple-antenna communication system, but at a cost of ...Precoding and space-time block coding (STBC)techniques using the uniform channel decomposition (UCD)are proposed to improve the bit error rate (BER) of themultiple-antenna communication system, but at a cost of areduced data rate. In order to achieve a higher overall systemperformance, a novel adaptive transceiver architecture whichflexibly combines both UCD and UCD + STBC technologies isproposed. The channel state information (CSI) feedback pathwas added to the precoder to select which coding method wasto be used, i.e. UCD alone or UCD + STBC. With thesmaller constellation sizes, Matlab simulation results showthat, the adaptive transceiver architecture will select the UCD-only mode under the higher SNR conditions in order to achievea higher bit rate. The UCD + STBC mode will be selectedunder the lower SNR conditions (e. g., SNR 〈 10 dB) inorder to maintain good BER performance at the cost of areduced data rate. This architecture was implemented andverified using both UMC 0.18 ASIC process technology and aXilinx xc4vlx Virtex-4 FPGA at 150 MHz. The simulationresults demonstrate that the required number of reconfigurablearithmetic unit slices grows linearly with the channel matrixsize, while the number of adder array unit and reconfigurablelogic unit slices increases slightly with the constellation size.展开更多
Aiming at the multi-antenna communication systems, a downlink transmit scheme combining adaptive beamforming (ABF) with space-time block coding (STBC) is first presented, which utilizes the maximization of the out...Aiming at the multi-antenna communication systems, a downlink transmit scheme combining adaptive beamforming (ABF) with space-time block coding (STBC) is first presented, which utilizes the maximization of the output mean signal-to-noise ratio (SNR) and the minimization of the symbol error rate (SER) upper bound of the three widely used modulations as the design criteria. Then, based on the moment generating function (MGF) and the Gauss-Chebyshev integration, a simple and accurate numerical method is presented to analyze the SER performance of the system with the new transmit scheme under the three commonly used modulations. Finally, computer simulation results demonstrate the effectiveness and superiority of the proposed strategy.展开更多
A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay syst...A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay system over Nakagami-m fading channels with perfect and imperfect channel state information (CSI). In order to maximize spectral efficiency (SE) under delay and packet error rate (PER) performance constraints, a state transition model and an optimization framework with perfect CSI are presented. Then the framework is extended to cooperative relay system with imperfect CSI. The numerical results show that the scheme can achieve maximum SE while satisfying transmitting delay requirements. Compared with the imperfect CSI, the average PER with perfect CSI is much lower and the spectral efficiency is much higher.展开更多
A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels wit...A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels with multiple single-antenna users. And an analytical error model is established to describe the symbol decoding errors between interusers, based on which a close form expression for theoretical Bit Error Rate (BER) performance of the scheme is derived to analyze the influence of the interuser decoding errors on the BER performance of the scheme. Then simulation is complimented to verify the analytic result above, which also shows that the BER performance of DSTBC-MC-CDMA outgoes that of non-cooperative MC-CDMA with considerable gains. Further- more, the simulations coincide with the theoretical results well.展开更多
In this paper, an idea of using space-time block coding (STBC) in multi-user cooperative diversity has been exploited to improve the performance of the transmission in wireless local area networks. The theoretical and...In this paper, an idea of using space-time block coding (STBC) in multi-user cooperative diversity has been exploited to improve the performance of the transmission in wireless local area networks. The theoretical and simulation results show that, using STBC approaches can always achieve the better performance than existing techniques without introducing the space-time coding. By analyzing the throughput and frame error ratio (FER) of the two different STBC cooperative schemes, we find the trade-off between throughput and reliability. The location of the relay is crucial to the performance, which supposes a rule for future cross-layer design.展开更多
Due to the proliferation of mobile internet access, the cellu-lar traffic is envisaged to experience a 1000-fold growth inthe second decade of the 21 st century. To meet such a hugetraffic demand, the Fifth Generation...Due to the proliferation of mobile internet access, the cellu-lar traffic is envisaged to experience a 1000-fold growth inthe second decade of the 21 st century. To meet such a hugetraffic demand, the Fifth Generation(5G) network have toadopt new techniques to substantially increase spectral effi-ciency and reliability. At the base station side, available re-sources(power supply, equipment size, processing capability,etc.) are far more sufficient than that of the terminal side,which imposes a high challenge on the uplink transmission.The concept of cooperative communications opens a possibili-ty of using multiple terminals to cooperatively achieve spa-tial diversity that is typically obtained by means of multipleantennas in the base station. The application of Device-to-Device(D2D) communications in the 3GPP LTE system fur-ther pushes the collaboration of terminals from the theory tothe practice. The utilization of D2D-based cooperative relay-ing is promising in the era of 5G. In this paper, we compara-tively study several cooperative multi-relay schemes, includ-ing the proposed opportunistic space-time coding, in thepresence of imperfect channel state information. The numeri-cal results reveal that the proposed scheme is the best coop-erative solution until now from the perspective of multiplex-ing-diversity tradeoff.展开更多
This article proposes a new space-time cooperative diversity scheme called full feedback-based cooperative diversity scheme (FFBCD). In contrast to the conventional adaptive space-time cooperative diversity schemes ...This article proposes a new space-time cooperative diversity scheme called full feedback-based cooperative diversity scheme (FFBCD). In contrast to the conventional adaptive space-time cooperative diversity schemes that utilize the feedback from only the destination node, the new scheme utilizes the feedback from both the destination node and the cooperation node. With the feedback from the destination node, the occasional successful reception of the destination node in the information distribution stage can be detected, thus avoiding unnecessary retransmissions in the information delivery stage. The feedback from the cooperation node indicates the receiving state of the cooperation node in the information distribution stage, and the source node and the cooperation node will not perform cooperative retransmission during the information delivery stage unless the cooperation node is received successfully in the information distribution stage. In this way the new scheme can reduce the number of transmission attempt and improve the channel utilization. The expressions of the average number of transmission attempt are given. Numerical approximations and simulation results both show that the new scheme performs better than the non-cooperative scheme and the conventional adaptive space-time cooperative diversity scheme.展开更多
We address the problem of adaptive modulation and coding scheme(AMCS) for a multi-input multioutput(MIMO) system in presence of time-varying transmitting correlation.Antenna subset selection and quasiorthogonal space-...We address the problem of adaptive modulation and coding scheme(AMCS) for a multi-input multioutput(MIMO) system in presence of time-varying transmitting correlation.Antenna subset selection and quasiorthogonal space-time block code(QOSTBC) have different error performances with different signal-to-noise ratios(SNRs) and in different spatial correlation scenarios.The error performance can be improved by selecting an appropriate transmission scheme to adapt to various channel conditions.The maximum distance criterion is the simplest and very effective algorithm for the antenna subset selection without needs of complex calculation and channel state information at transmitter(CSIT).The minimum error performance criteria and the simplified linear decision strategy are developed for constant transmission rate traffic to select the optimal transmission scheme.It can dramatically decrease algorithm complexity for obtaining error probability according to the known quantities comparing with using instant CSIT.Simulation results show that,remarkable performances including low SNR and weak spatial correlation at the expense of simple calculation and almost no bandwidth loss by adopting AMCS can be achieved.The proposed AMCS improves robustness of slowly varying spatial correlated channels.展开更多
In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes ...In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes are selected in a way to optimize the system performance in terms of BER,based on the suggested algorithm which checks if the selected relays using the maxmin criterion are the best ones.In the second step,the chosen relay-nodes perform an orthogonal space-time coding scheme using the two-phase relaying protocol to establish a bi-directional communication between the communicating terminals,leading to a significant improvement in the achievable coding and diversity gain.To further improve the overall system performance,the selected relay-nodes apply also a digital network coding scheme.Furthermore,this paper discusses the analytical approximation of the BER performance of the proposed strategy,where we prove that the analytical results match almost perfectly the simulated ones.Finally,our simulation results show that the proposed strategy outperforms the current state-of-the-art ones.展开更多
文摘To satisfy the request of wireless communication for new generation communication system, a new scheme consisting of a combination of adaptive technology and space-time code-OFDM is presented. The proposed method, exploits adaptive bit allocation scheme over multipath fading channel. Numerical simulations have shown that the proposed scheme can greatly improve the performance of non-adaptive STBC-OFDM system.
文摘A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.
基金Supported by the Science and Technology on Avionics Integration Laboratory and National Aeronautical Science Foundation of China(20105552)
文摘An efficient LDPC-coded multi-relay cooperation architecture is proposed based on virtual vertical Bell Labs layered space-time (V-BLAST) processing for uplink communication, where minimum-mean-square-error (MMSE) and BP-based joint iterative decoding based on the introduced muhi-layer Tanner graph are effectively de- signed to detect and decode the corrupted received sequence at the destination. By introducing V-BLAST transmis- sion to the coded multi-relay cooperation, relays send their streams of symbols simultaneously, which increases the data rate and significantly reduces the transmission delay. The theoretical analysis and numerical results show that the new LDPC coded cooperation scheme outperforms the coded non-cooperation under the same code rate, and it also achieves a good trade-off among the performance, signal delay, and the encoding complexity associated with the number of relays. The performance gain can be credited to the proposed V-BLAST processing architecture and BP-based joint iterative decoding by the introduced multi-layer Tanner graph at a receiver-side.
基金supported by the State Key Laboratory for Mobile Communication Open Foundation(N200502)the Natural Science Foundation of Jiangsu Province(BK2007192).
文摘An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.
文摘In wireless relaying networks, the traditional incremental cooperative relaying scheme (IR) could improve the system throughput enormously over fading channels by exploiting relay nodes to retransmit the source data packet to the destination. In order to enhance the system throughput over time-varying fading channels, this paper proposes an adaptive incremental cooperative re-laying scheme (AIR) based on adaptive modulation and coding, which implements adaptive rate transmission for the source and relay nodes according to channel state information. We derive expressions for the AIR system throughput, and then give a gradient-based search algorithm to find the optimized adaptive solution for the AIR system by maximizing throughput subject to the constraint of packet error rate at the data link layer. The results indicate that throughput of AIR system outperforms that of traditional IR system greatly for any SNR value.
基金The National Natural Science Foundation of China(No.61376025)the Industry-Academic Joint Technological Innovations FundP roject of Jiangsu(No.BY2013003-11)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX_0273)
文摘Precoding and space-time block coding (STBC)techniques using the uniform channel decomposition (UCD)are proposed to improve the bit error rate (BER) of themultiple-antenna communication system, but at a cost of areduced data rate. In order to achieve a higher overall systemperformance, a novel adaptive transceiver architecture whichflexibly combines both UCD and UCD + STBC technologies isproposed. The channel state information (CSI) feedback pathwas added to the precoder to select which coding method wasto be used, i.e. UCD alone or UCD + STBC. With thesmaller constellation sizes, Matlab simulation results showthat, the adaptive transceiver architecture will select the UCD-only mode under the higher SNR conditions in order to achievea higher bit rate. The UCD + STBC mode will be selectedunder the lower SNR conditions (e. g., SNR 〈 10 dB) inorder to maintain good BER performance at the cost of areduced data rate. This architecture was implemented andverified using both UMC 0.18 ASIC process technology and aXilinx xc4vlx Virtex-4 FPGA at 150 MHz. The simulationresults demonstrate that the required number of reconfigurablearithmetic unit slices grows linearly with the channel matrixsize, while the number of adder array unit and reconfigurablelogic unit slices increases slightly with the constellation size.
基金the National Natural Science Foundation of China (Grant Nos. 60672093 and 60496310)the National Basic Research Program of China (Grant No. 2007CB310603)+1 种基金the National High Technology Project of China (Grant No. 2007AA01Z262)Huawei University Foundation
文摘Aiming at the multi-antenna communication systems, a downlink transmit scheme combining adaptive beamforming (ABF) with space-time block coding (STBC) is first presented, which utilizes the maximization of the output mean signal-to-noise ratio (SNR) and the minimization of the symbol error rate (SER) upper bound of the three widely used modulations as the design criteria. Then, based on the moment generating function (MGF) and the Gauss-Chebyshev integration, a simple and accurate numerical method is presented to analyze the SER performance of the system with the new transmit scheme under the three commonly used modulations. Finally, computer simulation results demonstrate the effectiveness and superiority of the proposed strategy.
基金Sponsored by the National Science and Technology Major Special Project of China (Grant No.2011ZX03003-003-02)the Natural Science Foundation of China (Grant No. 60972070)+2 种基金the Natural Science Foundation of Chongqing (Grant No. CSTC2009BA2090)the Foundation of Chongqing Educational Committee ( Grant No. KJ100514)the Special Fund of Chongqing Key Laboratory
文摘A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay system over Nakagami-m fading channels with perfect and imperfect channel state information (CSI). In order to maximize spectral efficiency (SE) under delay and packet error rate (PER) performance constraints, a state transition model and an optimization framework with perfect CSI are presented. Then the framework is extended to cooperative relay system with imperfect CSI. The numerical results show that the scheme can achieve maximum SE while satisfying transmitting delay requirements. Compared with the imperfect CSI, the average PER with perfect CSI is much lower and the spectral efficiency is much higher.
基金Supported by the National Natural Science Foundation of China (No.60372107).
文摘A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels with multiple single-antenna users. And an analytical error model is established to describe the symbol decoding errors between interusers, based on which a close form expression for theoretical Bit Error Rate (BER) performance of the scheme is derived to analyze the influence of the interuser decoding errors on the BER performance of the scheme. Then simulation is complimented to verify the analytic result above, which also shows that the BER performance of DSTBC-MC-CDMA outgoes that of non-cooperative MC-CDMA with considerable gains. Further- more, the simulations coincide with the theoretical results well.
文摘In this paper, an idea of using space-time block coding (STBC) in multi-user cooperative diversity has been exploited to improve the performance of the transmission in wireless local area networks. The theoretical and simulation results show that, using STBC approaches can always achieve the better performance than existing techniques without introducing the space-time coding. By analyzing the throughput and frame error ratio (FER) of the two different STBC cooperative schemes, we find the trade-off between throughput and reliability. The location of the relay is crucial to the performance, which supposes a rule for future cross-layer design.
文摘Due to the proliferation of mobile internet access, the cellu-lar traffic is envisaged to experience a 1000-fold growth inthe second decade of the 21 st century. To meet such a hugetraffic demand, the Fifth Generation(5G) network have toadopt new techniques to substantially increase spectral effi-ciency and reliability. At the base station side, available re-sources(power supply, equipment size, processing capability,etc.) are far more sufficient than that of the terminal side,which imposes a high challenge on the uplink transmission.The concept of cooperative communications opens a possibili-ty of using multiple terminals to cooperatively achieve spa-tial diversity that is typically obtained by means of multipleantennas in the base station. The application of Device-to-Device(D2D) communications in the 3GPP LTE system fur-ther pushes the collaboration of terminals from the theory tothe practice. The utilization of D2D-based cooperative relay-ing is promising in the era of 5G. In this paper, we compara-tively study several cooperative multi-relay schemes, includ-ing the proposed opportunistic space-time coding, in thepresence of imperfect channel state information. The numeri-cal results reveal that the proposed scheme is the best coop-erative solution until now from the perspective of multiplex-ing-diversity tradeoff.
基金supported by the 111 project(B08038)the National Natural Science Foundation of China(60702060)
文摘This article proposes a new space-time cooperative diversity scheme called full feedback-based cooperative diversity scheme (FFBCD). In contrast to the conventional adaptive space-time cooperative diversity schemes that utilize the feedback from only the destination node, the new scheme utilizes the feedback from both the destination node and the cooperation node. With the feedback from the destination node, the occasional successful reception of the destination node in the information distribution stage can be detected, thus avoiding unnecessary retransmissions in the information delivery stage. The feedback from the cooperation node indicates the receiving state of the cooperation node in the information distribution stage, and the source node and the cooperation node will not perform cooperative retransmission during the information delivery stage unless the cooperation node is received successfully in the information distribution stage. In this way the new scheme can reduce the number of transmission attempt and improve the channel utilization. The expressions of the average number of transmission attempt are given. Numerical approximations and simulation results both show that the new scheme performs better than the non-cooperative scheme and the conventional adaptive space-time cooperative diversity scheme.
基金the Chinese Scholarship Council for the financial support
文摘We address the problem of adaptive modulation and coding scheme(AMCS) for a multi-input multioutput(MIMO) system in presence of time-varying transmitting correlation.Antenna subset selection and quasiorthogonal space-time block code(QOSTBC) have different error performances with different signal-to-noise ratios(SNRs) and in different spatial correlation scenarios.The error performance can be improved by selecting an appropriate transmission scheme to adapt to various channel conditions.The maximum distance criterion is the simplest and very effective algorithm for the antenna subset selection without needs of complex calculation and channel state information at transmitter(CSIT).The minimum error performance criteria and the simplified linear decision strategy are developed for constant transmission rate traffic to select the optimal transmission scheme.It can dramatically decrease algorithm complexity for obtaining error probability according to the known quantities comparing with using instant CSIT.Simulation results show that,remarkable performances including low SNR and weak spatial correlation at the expense of simple calculation and almost no bandwidth loss by adopting AMCS can be achieved.The proposed AMCS improves robustness of slowly varying spatial correlated channels.
基金This work was supported by College of Engineering and Technology,the American University of the Middle East,Kuwait.Homepage:https://www.aum.edu.kw.
文摘In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes are selected in a way to optimize the system performance in terms of BER,based on the suggested algorithm which checks if the selected relays using the maxmin criterion are the best ones.In the second step,the chosen relay-nodes perform an orthogonal space-time coding scheme using the two-phase relaying protocol to establish a bi-directional communication between the communicating terminals,leading to a significant improvement in the achievable coding and diversity gain.To further improve the overall system performance,the selected relay-nodes apply also a digital network coding scheme.Furthermore,this paper discusses the analytical approximation of the BER performance of the proposed strategy,where we prove that the analytical results match almost perfectly the simulated ones.Finally,our simulation results show that the proposed strategy outperforms the current state-of-the-art ones.