The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search sta...The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems.展开更多
Community-acquired pneumonia(CAP)is considered a sort of pneumonia developed outside hospitals and clinics.To diagnose community-acquired pneumonia(CAP)more efficiently,we proposed a novel neural network model.We intr...Community-acquired pneumonia(CAP)is considered a sort of pneumonia developed outside hospitals and clinics.To diagnose community-acquired pneumonia(CAP)more efficiently,we proposed a novel neural network model.We introduce the 2-dimensional wavelet entropy(2d-WE)layer and an adaptive chaotic particle swarm optimization(ACP)algorithm to train the feed-forward neural network.The ACP uses adaptive inertia weight factor(AIWF)and Rossler attractor(RA)to improve the performance of standard particle swarm optimization.The final combined model is named WE-layer ACP-based network(WACPN),which attains a sensitivity of 91.87±1.37%,a specificity of 90.70±1.19%,a precision of 91.01±1.12%,an accuracy of 91.29±1.09%,F1 score of 91.43±1.09%,an MCC of 82.59±2.19%,and an FMI of 91.44±1.09%.The AUC of this WACPN model is 0.9577.We find that the maximum deposition level chosen as four can obtain the best result.Experiments demonstrate the effectiveness of both AIWF and RA.Finally,this proposed WACPN is efficient in diagnosing CAP and superior to six state-of-the-art models.Our model will be distributed to the cloud computing environment.展开更多
基金Project of Key Science and Technology of the Henan Province (No.202102310259)Henan Province University Scientific and Technological Innovation Team (No.18IRTSTHN009).
文摘The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems.
基金This paper is partially supported by Medical Research Council Confidence in Concept Award,UK(MC_PC_17171)Royal Society International Exchanges Cost Share Award,UK(RP202G0230)+5 种基金British Heart Foundation Accelerator Award,UK(AA/18/3/34220)Hope Foundation for Cancer Research,UK(RM60G0680)Global Challenges Research Fund(GCRF),UK(P202PF11)Sino-UK Industrial Fund,UK(RP202G0289)LIAS Pioneering Partnerships award,UK(P202ED10)Data Science Enhancement Fund,UK(P202RE237).
文摘Community-acquired pneumonia(CAP)is considered a sort of pneumonia developed outside hospitals and clinics.To diagnose community-acquired pneumonia(CAP)more efficiently,we proposed a novel neural network model.We introduce the 2-dimensional wavelet entropy(2d-WE)layer and an adaptive chaotic particle swarm optimization(ACP)algorithm to train the feed-forward neural network.The ACP uses adaptive inertia weight factor(AIWF)and Rossler attractor(RA)to improve the performance of standard particle swarm optimization.The final combined model is named WE-layer ACP-based network(WACPN),which attains a sensitivity of 91.87±1.37%,a specificity of 90.70±1.19%,a precision of 91.01±1.12%,an accuracy of 91.29±1.09%,F1 score of 91.43±1.09%,an MCC of 82.59±2.19%,and an FMI of 91.44±1.09%.The AUC of this WACPN model is 0.9577.We find that the maximum deposition level chosen as four can obtain the best result.Experiments demonstrate the effectiveness of both AIWF and RA.Finally,this proposed WACPN is efficient in diagnosing CAP and superior to six state-of-the-art models.Our model will be distributed to the cloud computing environment.