In the experiment, the brown rice whose moisture content was 12.5% was used as raw material. The brown rice was grouped, then moisturized differently and milled. While milling, the energy consumption, the rate of brok...In the experiment, the brown rice whose moisture content was 12.5% was used as raw material. The brown rice was grouped, then moisturized differently and milled. While milling, the energy consumption, the rate of broken rice and the crack rate were tested. It is confirmed that the stress crack owing to the moisture added to the brown rice can be avoided when the moisture amount added once is limited to no more than 1.5%. It is also proved that the energy consumption can be reduced, the yielding rate of rice can be increased and that the quality of rice can be improved.展开更多
This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the...This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the hydrodynamic pressure acting on the cylinder is derived based on the radiation theory with the inviscid and incompressible assumptions.The governing equation is solved by using the method of separating variables and analytical solutions are obtained by assigning reasonable boundary conditions.The analytical result is validated by a numerical model using the exact artificial boundary simulation of the infinite water.The main variation and distribution characteristics of the hydrodynamic pressure acting on the side and bottom of the cylinder are analyzed for different combinations of wide-height and immersion ratios.The added mass coefficient of the cylinder is calculated by integrating the hydrodynamic pressure and simplified formulas are proposed for engineering applications.The calculation results show that the simplified formulas are in good agreement with the analytical solutions.展开更多
It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and adde...It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Pad6 approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.展开更多
The numerical prediction of added resistance and vertical ship motions of one ITTC (Intemational Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-S...The numerical prediction of added resistance and vertical ship motions of one ITTC (Intemational Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-SJTU is presented in this paper. The development of the solver naoe-FOAM-SJTU is based on the open source CFD tool, OpenFOAM. Numerical analysis is focused on the added resistance and vertical ship motions (heave and pitch motions) with four very different wavelengths ( 0.8Lpp 〈 2 〈 1.5L ) in regular head waves. Once the wavelength is near the length of the ship model, the responses of the resistance and ship motions become strongly influenced by nonlinear factors, as a result difficulties within simulations occur. In the paper, a comparison of the experimental results and the nonlinear strip theory was reviewed and based on the findings, the RANS simulations by the solver naoe-FOAM-SJTU were considered competent with the prediction of added resistance and vertical ship motions in a wide range of wave lengths.展开更多
In the present study, analyzed are the variation of added mass for a circular cylinder in the lock-in (synchronization) range of vortex-induced vibration (VIV) and the relationship between added mass and natural f...In the present study, analyzed are the variation of added mass for a circular cylinder in the lock-in (synchronization) range of vortex-induced vibration (VIV) and the relationship between added mass and natural frequency. A theoretical minimum value of the added mass coefficient for a circular cylinder at lock-in is given. Developed are semi-empirical formulas for the added mass of a circular cylinder at lock-in as a function of flow speed and mass ratio. A comparison between experiments and numerical simulations shows that the semi-empirical formulas describing the variation of the added mass for a cireular cylinder at lock-in are better than the ideal added mass. In addition, computation models such as the wake oscillator model using the present formulas can predict the amplitude response of a circular cylinder at lock-in more accurately than those using the ideal added mass.展开更多
The authors previously introduced a semi-empirical formula that enabled fast estimation of the added resistance of ships in head waves, and in this study the formula is further refined for easy use in engineering appl...The authors previously introduced a semi-empirical formula that enabled fast estimation of the added resistance of ships in head waves, and in this study the formula is further refined for easy use in engineering applications. It includes an alternative ship draft correction coefficient, which better accounts for the wave pressure decay with ship’s draft. In addition, it only uses the speed and main characteristics of the ship and wave environment as input, and has been simplified to the extent that it can be readily processed using a pocket calculator. Extensive validations are conducted for different ship types at low to moderate speeds in various typical irregular sea conditions, and encouraging results are obtained. This relevant and topical research lies within the framework of the recent IMO MEPC.232(65) (2013) EEDI guidelines for estimating the minimum powering of ships in adverse weather conditions, which specify for the use of simple methods in current Level 2 assessment within engineering applications.Keywords: added resistance, minimum power, IMO regulation, EEDI regulation, weather coefficient, semi-empirical formulas, ships, head waves展开更多
Photoelectrocatalysis(PEC)is a promising approach that can convert renewable solar energy into chemical energy,while most concern is concentrated on PEC water splitting to obtain high‐value‐added fuel—hydrogen.In p...Photoelectrocatalysis(PEC)is a promising approach that can convert renewable solar energy into chemical energy,while most concern is concentrated on PEC water splitting to obtain high‐value‐added fuel—hydrogen.In practice,more economic benefits can be produced based on PEC technique,such as H_(2)O oxidative H_(2)O_(2) synthesis,organic selective oxidation,organic pollutants degradation and CO_(2) reduction.Although there are plenty of excellent reviews focusing on the PEC water splitting system,the production of various high‐value‐added chemicals in PEC systems has not been discussed synthetically.This Account will focus on the production process of various high‐value‐added chemicals through PEC technology.The photoelectrode design,reaction environment and working mechanisms of PEC systems are also discussed in detail.We believe that this comprehensive Account of the expanded application of photoelectrocatalysis can add an inestimable impetus to the follow‐up development of this technology.展开更多
In this paper, added resistances acting on a hull of non ballast water ship(NBS) in high waves is discussed. The non ballast water ships were developed at the laboratory of the authors at Osaka Prefecture University, ...In this paper, added resistances acting on a hull of non ballast water ship(NBS) in high waves is discussed. The non ballast water ships were developed at the laboratory of the authors at Osaka Prefecture University, Japan. In the present paper, the performances of three kinds of bow shapes developed for the NBS were theoretically and experimentally investigated to find the best one in high waves. In previous papers, an optimum bow shape for the NBS was developed in calm water and in moderated waves. For a 2 m model for experiments and computations, the wave height is 0.02 m. This means that the wave height is 15% of the draft of the ship in full load conditions. In this paper, added resistances in high waves up to 0.07 m for a 2 m model or 53% of the full load draft are investigated. In such high waves linear wave theories which have been used in the design stage of a ship for a long time may not work well anymore, and experiments are the only effective tool to predict the added resistance in high waves. With the computations for waves, the ship is in a fully captured condition because shorter waves, λ/Lpp<0.6, are assumed.展开更多
An integral equation approach is utilized to in- vestigate the added mass and damping of floating produc- tion, storage and offloading system (FPSO system). Finite water depth Green function and higher-order boundar...An integral equation approach is utilized to in- vestigate the added mass and damping of floating produc- tion, storage and offloading system (FPSO system). Finite water depth Green function and higher-order boundary ele- ment method are used to solve integral equation. Numeri- cal results about added mass and damping are presented for odd and even mode motions of FPSO. The results show ro- bust convergence in high frequency range and can be used in wave load analysis for FPSO designing and operation.展开更多
Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predi...Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predicting the decrease of speed on a ship operating at sea. Furthermore, it is also significant to investigate the added resistance for a ship functioning in short waves of large modern ships. The researcher presents an estimation formula for the calculation of an added resistance study in short waves derived from the reflection law. An improved method has been proposed to calculate the added resistance due to ship motions, which applies the radiated energy theory along with the strip method. This procedure is based on an extended integral equation (EIE) method, which was used for solving the hydrodynamic coefficients without effects of the irregular frequency. Next, a combined method was recommended for the estimation of added resistance for a ship in the whole wave length range. The comparison data with other experiments indicate the method presented in the paper provides satisfactory results for large blunt ship.展开更多
The fluid flow induced by light-density, low-stiffness structures was treated as inviscid, incompressible irrotational and steady plane flow. On the basis of the dipole configuration method, a singularity distribution...The fluid flow induced by light-density, low-stiffness structures was treated as inviscid, incompressible irrotational and steady plane flow. On the basis of the dipole configuration method, a singularity distribution method of distributing sources/sinks and dipoles on interfaces of the structure and fluid was developed to solve the problem of fluid flow induced by the vibration of common structures, such as columns and columns with fins, deduce the expression of kinetic energy of the fluid flow, and obtain the added mass finally. The calculational instances with analytical solutions prove the reliability of this method.展开更多
The added mass coefficient and the water level index formulas for the same-phase and anti-phase vibration of rectangular liquid tanks' bulkheads were derived based on dry mode theory. Three fluid-structure interac...The added mass coefficient and the water level index formulas for the same-phase and anti-phase vibration of rectangular liquid tanks' bulkheads were derived based on dry mode theory. Three fluid-structure interaction numerical methods including Fluid FEM and Fluid BEM were used in this case. The comparison of numerical and theoretical results by the present method shows that ANSYS/Fluid80 is more credible, the NASTRAN/Virtual Mass Method is more suitable for engineering calculations and results of the same-phase vibration by the present method is more accurate.展开更多
In this paper, a panel method based on three dimensional potential flow theory is used to study the problem of wave added resistance. The time-domain motion response of Wigely III ship in head waves is calculated by A...In this paper, a panel method based on three dimensional potential flow theory is used to study the problem of wave added resistance. The time-domain motion response of Wigely III ship in head waves is calculated by AQWA, and then the wave added resistance of ship is obtained by near-field pressure integration method. By comparing the calculated results with the experimental data in literature, it is shown that the variation trend and peak value are in good agreement, and the accuracy and efficiency meet the research requirements. Based on the above mentioned method, the wave added resistance of a deep-V hybrid monohull in head waves is studied. The motions and wave added resistances of the deep-V hybrid monohull and the deep-V original ship advancing in head waves with various forward speed and wave frequencies are calculated and analyzed. The results show that the longitudinal motion response of the deep-V hybrid monohull is effectively suppressed and the wave added resistance is obviously reduced, the new type of ship has good engineering application prospects. The present method provides an approach of satisfactory accuracy and efficiency to predict wave added resistance of ships voyaging in waves.展开更多
This study aims to investigate the nonlinear added mass moment of inertia and damping moment characteristics of largeamplitude ship roll motion based on transient motion data through the nonparametric system identific...This study aims to investigate the nonlinear added mass moment of inertia and damping moment characteristics of largeamplitude ship roll motion based on transient motion data through the nonparametric system identification method.An inverse problem was formulated to solve the first-kind Volterra-type integral equation using sets of motion signal data.However,this numerical approach leads to solution instability due to noisy data.Regularization is a technique that can overcome the lack of stability;hence,Landweber’s regularization method was employed in this study.The L-curve criterion was used to select regularization parameters(number of iterations)that correspond to the accuracy of the inverse solution.The solution of this method is a discrete moment,which is the summation of nonlinear restoring,nonlinear damping,and nonlinear mass moment of inertia.A zero-crossing detection technique is used in the nonparametric system identification method on a pair of measured data of the angular velocity and angular acceleration of a ship,and the detections are matched with the inverse solution at the same discrete times.The procedure was demonstrated through a numerical model of a full nonlinear free-roll motion system in still water to examine and prove its accuracy.Results show that the method effectively and efficiently identified the functional form of the nonlinear added moment of inertia and damping moment.展开更多
During the insect flight, the force peak at the start of each stroke contributes a lot to the total aerodynamic force. Yet how this force is generated is still controversial. Two current explanations to this are wake ...During the insect flight, the force peak at the start of each stroke contributes a lot to the total aerodynamic force. Yet how this force is generated is still controversial. Two current explanations to this are wake capture and Added Mass Effect (AME) mechanisms. To study the AME, we present an extended unsteady blade element model which takes both the added mass of fluid and rotational effect of the wing into account. Simulation results show a high force peak at the start of each stroke and are quite similar to the measured forces on the physical wing model. We found that although the Added Mass Force (AMF) of the medium contributes a lot to this force peak, the wake capture effect further augments this force and may play a more important role in delayed mode. Furthermore, we also found that there might be an unknown mechanism which may augment the AME during acceleration period at the start of each stroke, and diminish the AME during deceleration at the end of each stroke.展开更多
In this study, two different designs of liquid metal fast reactor(LMFR) fuel rods wire-wrapped and nonwire-wrapped(bare) are compared with respect to different parameters as a means of considering the optimum fuel des...In this study, two different designs of liquid metal fast reactor(LMFR) fuel rods wire-wrapped and nonwire-wrapped(bare) are compared with respect to different parameters as a means of considering the optimum fuel design. Nuclear seismic rules require that systems and components that are important for safety must be capable of bearing earthquake effects, and that their integrity and functionality should be guaranteed. Mode shapes, natural frequencies, stresses on cladding, and seismic aspects are considered for comparison using ANSYS. Modal analysis is compared in a vacuum and in lead–bismuth eutectic(LBE) using potential flow theory by considering the added mass effect. A simple and accurate approach is suggested for the determination of the LBE added mass effect and is verified by a manually calculated added mass, which further proved the usefulness of potential flow theory for the accurate estimation of the added mass effect. The verification of the hydrodynamic function(τ) over the entire frequency range further validated the finite element method(FEM) modal analysis results. Stresses obtained for fuel rods against different loading combinations revealed that they were within the allowable limits with maximum stress ratios of 0.25(bare) and 0.74(wire-wrapped). In order to verify the structural integrity of cladding tubes, stresses along the cladding length were determined during different transients and were also calculated manually for static pressure. The manual calculations could be roughly compared with the ANSYS results, and the two showed a close agreement. Contact analysis methodology was selected,and the most appropriate analysis options were suggested for establishing contact between the wire and cladding for the wire-wrapped design grid independence analysis,which proved the accuracy of the results, confirmed the selection of the appropriate procedure, and validated the use of the ANSYS mechanical APDL code for LMFR fuel rod analysis. The results provided detailed insight into the structural design of LMFR fuel rods by considering different structural configurations(i.e., bare and wire-wrapped) in the seismic loading;this not only provides a FEM procedure for LMFR fuel with complex configuration, but also guides the reference design of LMFR fuel rods.展开更多
The solidification and corrosion behavior of the Ti/B added Zn-Al-Mg alloys were experimentally investigated by means of microstructure characterization and electrochemical test.The basic calculations were carried out...The solidification and corrosion behavior of the Ti/B added Zn-Al-Mg alloys were experimentally investigated by means of microstructure characterization and electrochemical test.The basic calculations were carried out to predict the characteristics of the Ti-added Zn-Al-Mg alloys.The Zn-Al-Mg ingots with minor doping of Ti/B were prepared and solidified under different cooling rate,including air cooling,water quenching and furnace cooling.The scanning electron microscopy(SEM)and the X-ray diffraction method(XRD)were used to determine the microstructures and phase types of the alloy samples.It could be discovered that trace TiAl3 particles were dispersed in the Ti/B added alloy samples which provide the heterogeneous nucleation sites to refine the size of the dendrites and the eutectic microstructures.More fined microstructures with the addition of both Ti and B were obtained compared with those with the merely addition of Ti,and the water cooled alloys presented the finest microstructures due to the fastest cooling rate.It could also be noticed that with the increasing solidification rate,the percentage of the MgZn_(2) phase turned out to be higher because of the Mg_(2)Zn_(11)↔MgZn_(2) transition,which is in consistent with the results in the actual hot-dip galvanizing process.Electrochemical experiments in the previous work included methods the of the Tafel polarization test and the electrochemical impedance spectroscopy test(EIS).Results show that the quenched Zn-Al-Mg alloy with the addition of both Ti and B takes on best corrosion resistance.Consequently,the addition of certain amount of Ti/B elements and the appropriate elevation of the cooling rate will be the practicable approaches to optimize the microstructure and the corrosion resistance of the Zn-Al-Mg coatings in the actual galvanizing process.展开更多
The application to detect ilally added drugs in dietary supplerments by near-infrared spectral imaging was studied with the focus on nifedipine,diclofenac and metformin.The method is based on near-infrared spectral im...The application to detect ilally added drugs in dietary supplerments by near-infrared spectral imaging was studied with the focus on nifedipine,diclofenac and metformin.The method is based on near-infrared spectral images correlation cofficient to detect ilally added drugs.The results comply 100%with HPLC methods test results with no false positive results.展开更多
The electrochemical reduction of C02 into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on ...The electrochemical reduction of C02 into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on fossil fuels and mitigates the negative impact of anthropogenic C02 emissions on the planet. Although converting CO2 to fuels is not in itself a new concept, the field has not sub- stantially advanced in the last 30 years primarily because of the challenge of discovery of structural electrocatalysts and the development of membrane architectures for efficient collection of reactants and separation of products. This overview summarizes recent advances in catalytic conversion of CO2 and presents the challenges and future directions in producing value-added fuels.展开更多
[Objecdve] The aim was to observe the puff-by-puff transfer ratios of some flavors in cigarettes. [Method] Based on national stand- ards, the puff-by-puff transfer of tobacco of carbonyl flavors was analyzed. In the m...[Objecdve] The aim was to observe the puff-by-puff transfer ratios of some flavors in cigarettes. [Method] Based on national stand- ards, the puff-by-puff transfer of tobacco of carbonyl flavors was analyzed. In the meantime, by dint of simultaneous distillation and extraction equip- ment coupled to GC and GC/MS, the puff-by-puff transfer ratios to TPM of smoke were expounded and compared. [ Result] The puff-by-puff deliv- ery profiles of NFDPT,nicotine and carbon monoxide increased with increasing puff number. This trend was similar to that of particulate matters. The transfer ratio of flavored tobacco was increasing in general, but partial flavors augmented to the maximum value and then decreased slowly. [ Conclusion] The study provided reference for the application of carbonyl compounds in tobacco.展开更多
基金Tenth Eive-Year Plan of the Committee of the Scientific Tech. of Heilongjiang Province (GB02B4040-1)Heilongjiang Education Bureau (10511012)
文摘In the experiment, the brown rice whose moisture content was 12.5% was used as raw material. The brown rice was grouped, then moisturized differently and milled. While milling, the energy consumption, the rate of broken rice and the crack rate were tested. It is confirmed that the stress crack owing to the moisture added to the brown rice can be avoided when the moisture amount added once is limited to no more than 1.5%. It is also proved that the energy consumption can be reduced, the yielding rate of rice can be increased and that the quality of rice can be improved.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52078010 and 52101321)the National Key Research and Development Program of China(Grant No.2022YFC3004300).
文摘This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the hydrodynamic pressure acting on the cylinder is derived based on the radiation theory with the inviscid and incompressible assumptions.The governing equation is solved by using the method of separating variables and analytical solutions are obtained by assigning reasonable boundary conditions.The analytical result is validated by a numerical model using the exact artificial boundary simulation of the infinite water.The main variation and distribution characteristics of the hydrodynamic pressure acting on the side and bottom of the cylinder are analyzed for different combinations of wide-height and immersion ratios.The added mass coefficient of the cylinder is calculated by integrating the hydrodynamic pressure and simplified formulas are proposed for engineering applications.The calculation results show that the simplified formulas are in good agreement with the analytical solutions.
基金State Key Laboratory of Hydroscience and Engineering Under Grant No.2008-TC-2National Natural Science Foundation of China Under Grant No.90510018,50779021 and 90715041
文摘It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Pad6 approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 50739004 and 11072154)
文摘The numerical prediction of added resistance and vertical ship motions of one ITTC (Intemational Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-SJTU is presented in this paper. The development of the solver naoe-FOAM-SJTU is based on the open source CFD tool, OpenFOAM. Numerical analysis is focused on the added resistance and vertical ship motions (heave and pitch motions) with four very different wavelengths ( 0.8Lpp 〈 2 〈 1.5L ) in regular head waves. Once the wavelength is near the length of the ship model, the responses of the resistance and ship motions become strongly influenced by nonlinear factors, as a result difficulties within simulations occur. In the paper, a comparison of the experimental results and the nonlinear strip theory was reviewed and based on the findings, the RANS simulations by the solver naoe-FOAM-SJTU were considered competent with the prediction of added resistance and vertical ship motions in a wide range of wave lengths.
基金This work is financially supported by Projects 863(2006AA09Z301)NSF(10532070)KJCX2-YW-L02
文摘In the present study, analyzed are the variation of added mass for a circular cylinder in the lock-in (synchronization) range of vortex-induced vibration (VIV) and the relationship between added mass and natural frequency. A theoretical minimum value of the added mass coefficient for a circular cylinder at lock-in is given. Developed are semi-empirical formulas for the added mass of a circular cylinder at lock-in as a function of flow speed and mass ratio. A comparison between experiments and numerical simulations shows that the semi-empirical formulas describing the variation of the added mass for a cireular cylinder at lock-in are better than the ideal added mass. In addition, computation models such as the wake oscillator model using the present formulas can predict the amplitude response of a circular cylinder at lock-in more accurately than those using the ideal added mass.
基金Partly Supported by the Collaborative Project SHOPERA under Grant Agreement No.605221
文摘The authors previously introduced a semi-empirical formula that enabled fast estimation of the added resistance of ships in head waves, and in this study the formula is further refined for easy use in engineering applications. It includes an alternative ship draft correction coefficient, which better accounts for the wave pressure decay with ship’s draft. In addition, it only uses the speed and main characteristics of the ship and wave environment as input, and has been simplified to the extent that it can be readily processed using a pocket calculator. Extensive validations are conducted for different ship types at low to moderate speeds in various typical irregular sea conditions, and encouraging results are obtained. This relevant and topical research lies within the framework of the recent IMO MEPC.232(65) (2013) EEDI guidelines for estimating the minimum powering of ships in adverse weather conditions, which specify for the use of simple methods in current Level 2 assessment within engineering applications.Keywords: added resistance, minimum power, IMO regulation, EEDI regulation, weather coefficient, semi-empirical formulas, ships, head waves
文摘Photoelectrocatalysis(PEC)is a promising approach that can convert renewable solar energy into chemical energy,while most concern is concentrated on PEC water splitting to obtain high‐value‐added fuel—hydrogen.In practice,more economic benefits can be produced based on PEC technique,such as H_(2)O oxidative H_(2)O_(2) synthesis,organic selective oxidation,organic pollutants degradation and CO_(2) reduction.Although there are plenty of excellent reviews focusing on the PEC water splitting system,the production of various high‐value‐added chemicals in PEC systems has not been discussed synthetically.This Account will focus on the production process of various high‐value‐added chemicals through PEC technology.The photoelectrode design,reaction environment and working mechanisms of PEC systems are also discussed in detail.We believe that this comprehensive Account of the expanded application of photoelectrocatalysis can add an inestimable impetus to the follow‐up development of this technology.
文摘In this paper, added resistances acting on a hull of non ballast water ship(NBS) in high waves is discussed. The non ballast water ships were developed at the laboratory of the authors at Osaka Prefecture University, Japan. In the present paper, the performances of three kinds of bow shapes developed for the NBS were theoretically and experimentally investigated to find the best one in high waves. In previous papers, an optimum bow shape for the NBS was developed in calm water and in moderated waves. For a 2 m model for experiments and computations, the wave height is 0.02 m. This means that the wave height is 15% of the draft of the ship in full load conditions. In this paper, added resistances in high waves up to 0.07 m for a 2 m model or 53% of the full load draft are investigated. In such high waves linear wave theories which have been used in the design stage of a ship for a long time may not work well anymore, and experiments are the only effective tool to predict the added resistance in high waves. With the computations for waves, the ship is in a fully captured condition because shorter waves, λ/Lpp<0.6, are assumed.
基金supported by the Fundamental Research Funds forthe Central Universities (DVT10LK43)the Returned Overseas Chinese Scholars,State Education Ministry (2007[24])
文摘An integral equation approach is utilized to in- vestigate the added mass and damping of floating produc- tion, storage and offloading system (FPSO system). Finite water depth Green function and higher-order boundary ele- ment method are used to solve integral equation. Numeri- cal results about added mass and damping are presented for odd and even mode motions of FPSO. The results show ro- bust convergence in high frequency range and can be used in wave load analysis for FPSO designing and operation.
基金Supported by the National Natural Science Foundation of China under Grant No.51079032 the Outstanding Youth Science Foundation of Heilongjiang Province,No.200908
文摘Under the background of the energy saving and emission reduction, more and more attention has been placed on investigating the energy efficiency of ships. The added resistance has been noted for being crucial in predicting the decrease of speed on a ship operating at sea. Furthermore, it is also significant to investigate the added resistance for a ship functioning in short waves of large modern ships. The researcher presents an estimation formula for the calculation of an added resistance study in short waves derived from the reflection law. An improved method has been proposed to calculate the added resistance due to ship motions, which applies the radiated energy theory along with the strip method. This procedure is based on an extended integral equation (EIE) method, which was used for solving the hydrodynamic coefficients without effects of the irregular frequency. Next, a combined method was recommended for the estimation of added resistance for a ship in the whole wave length range. The comparison data with other experiments indicate the method presented in the paper provides satisfactory results for large blunt ship.
文摘The fluid flow induced by light-density, low-stiffness structures was treated as inviscid, incompressible irrotational and steady plane flow. On the basis of the dipole configuration method, a singularity distribution method of distributing sources/sinks and dipoles on interfaces of the structure and fluid was developed to solve the problem of fluid flow induced by the vibration of common structures, such as columns and columns with fins, deduce the expression of kinetic energy of the fluid flow, and obtain the added mass finally. The calculational instances with analytical solutions prove the reliability of this method.
基金supported by the Dalian Shipbuilding Industry Co., Ltd
文摘The added mass coefficient and the water level index formulas for the same-phase and anti-phase vibration of rectangular liquid tanks' bulkheads were derived based on dry mode theory. Three fluid-structure interaction numerical methods including Fluid FEM and Fluid BEM were used in this case. The comparison of numerical and theoretical results by the present method shows that ANSYS/Fluid80 is more credible, the NASTRAN/Virtual Mass Method is more suitable for engineering calculations and results of the same-phase vibration by the present method is more accurate.
基金financial support from the National Natural Science Foundation of China (Nos.51709246, U1806229, 51809244, and 51609220)the Fundamental Research Funds for the Central Universities (No.201713031)。
文摘In this paper, a panel method based on three dimensional potential flow theory is used to study the problem of wave added resistance. The time-domain motion response of Wigely III ship in head waves is calculated by AQWA, and then the wave added resistance of ship is obtained by near-field pressure integration method. By comparing the calculated results with the experimental data in literature, it is shown that the variation trend and peak value are in good agreement, and the accuracy and efficiency meet the research requirements. Based on the above mentioned method, the wave added resistance of a deep-V hybrid monohull in head waves is studied. The motions and wave added resistances of the deep-V hybrid monohull and the deep-V original ship advancing in head waves with various forward speed and wave frequencies are calculated and analyzed. The results show that the longitudinal motion response of the deep-V hybrid monohull is effectively suppressed and the wave added resistance is obviously reduced, the new type of ship has good engineering application prospects. The present method provides an approach of satisfactory accuracy and efficiency to predict wave added resistance of ships voyaging in waves.
文摘This study aims to investigate the nonlinear added mass moment of inertia and damping moment characteristics of largeamplitude ship roll motion based on transient motion data through the nonparametric system identification method.An inverse problem was formulated to solve the first-kind Volterra-type integral equation using sets of motion signal data.However,this numerical approach leads to solution instability due to noisy data.Regularization is a technique that can overcome the lack of stability;hence,Landweber’s regularization method was employed in this study.The L-curve criterion was used to select regularization parameters(number of iterations)that correspond to the accuracy of the inverse solution.The solution of this method is a discrete moment,which is the summation of nonlinear restoring,nonlinear damping,and nonlinear mass moment of inertia.A zero-crossing detection technique is used in the nonparametric system identification method on a pair of measured data of the angular velocity and angular acceleration of a ship,and the detections are matched with the inverse solution at the same discrete times.The procedure was demonstrated through a numerical model of a full nonlinear free-roll motion system in still water to examine and prove its accuracy.Results show that the method effectively and efficiently identified the functional form of the nonlinear added moment of inertia and damping moment.
文摘During the insect flight, the force peak at the start of each stroke contributes a lot to the total aerodynamic force. Yet how this force is generated is still controversial. Two current explanations to this are wake capture and Added Mass Effect (AME) mechanisms. To study the AME, we present an extended unsteady blade element model which takes both the added mass of fluid and rotational effect of the wing into account. Simulation results show a high force peak at the start of each stroke and are quite similar to the measured forces on the physical wing model. We found that although the Added Mass Force (AMF) of the medium contributes a lot to this force peak, the wake capture effect further augments this force and may play a more important role in delayed mode. Furthermore, we also found that there might be an unknown mechanism which may augment the AME during acceleration period at the start of each stroke, and diminish the AME during deceleration at the end of each stroke.
基金supported by the National Key R&D Program of China(No.2018YFB1900601)National Natural Science Foundation of China(No.11772086)
文摘In this study, two different designs of liquid metal fast reactor(LMFR) fuel rods wire-wrapped and nonwire-wrapped(bare) are compared with respect to different parameters as a means of considering the optimum fuel design. Nuclear seismic rules require that systems and components that are important for safety must be capable of bearing earthquake effects, and that their integrity and functionality should be guaranteed. Mode shapes, natural frequencies, stresses on cladding, and seismic aspects are considered for comparison using ANSYS. Modal analysis is compared in a vacuum and in lead–bismuth eutectic(LBE) using potential flow theory by considering the added mass effect. A simple and accurate approach is suggested for the determination of the LBE added mass effect and is verified by a manually calculated added mass, which further proved the usefulness of potential flow theory for the accurate estimation of the added mass effect. The verification of the hydrodynamic function(τ) over the entire frequency range further validated the finite element method(FEM) modal analysis results. Stresses obtained for fuel rods against different loading combinations revealed that they were within the allowable limits with maximum stress ratios of 0.25(bare) and 0.74(wire-wrapped). In order to verify the structural integrity of cladding tubes, stresses along the cladding length were determined during different transients and were also calculated manually for static pressure. The manual calculations could be roughly compared with the ANSYS results, and the two showed a close agreement. Contact analysis methodology was selected,and the most appropriate analysis options were suggested for establishing contact between the wire and cladding for the wire-wrapped design grid independence analysis,which proved the accuracy of the results, confirmed the selection of the appropriate procedure, and validated the use of the ANSYS mechanical APDL code for LMFR fuel rod analysis. The results provided detailed insight into the structural design of LMFR fuel rods by considering different structural configurations(i.e., bare and wire-wrapped) in the seismic loading;this not only provides a FEM procedure for LMFR fuel with complex configuration, but also guides the reference design of LMFR fuel rods.
基金Funded by the Provincial Key Research and Development Program of Hebei(No.20311004D)the Foundation of Shougang Research Institute of Technology(No.2020RZ06-031)。
文摘The solidification and corrosion behavior of the Ti/B added Zn-Al-Mg alloys were experimentally investigated by means of microstructure characterization and electrochemical test.The basic calculations were carried out to predict the characteristics of the Ti-added Zn-Al-Mg alloys.The Zn-Al-Mg ingots with minor doping of Ti/B were prepared and solidified under different cooling rate,including air cooling,water quenching and furnace cooling.The scanning electron microscopy(SEM)and the X-ray diffraction method(XRD)were used to determine the microstructures and phase types of the alloy samples.It could be discovered that trace TiAl3 particles were dispersed in the Ti/B added alloy samples which provide the heterogeneous nucleation sites to refine the size of the dendrites and the eutectic microstructures.More fined microstructures with the addition of both Ti and B were obtained compared with those with the merely addition of Ti,and the water cooled alloys presented the finest microstructures due to the fastest cooling rate.It could also be noticed that with the increasing solidification rate,the percentage of the MgZn_(2) phase turned out to be higher because of the Mg_(2)Zn_(11)↔MgZn_(2) transition,which is in consistent with the results in the actual hot-dip galvanizing process.Electrochemical experiments in the previous work included methods the of the Tafel polarization test and the electrochemical impedance spectroscopy test(EIS).Results show that the quenched Zn-Al-Mg alloy with the addition of both Ti and B takes on best corrosion resistance.Consequently,the addition of certain amount of Ti/B elements and the appropriate elevation of the cooling rate will be the practicable approaches to optimize the microstructure and the corrosion resistance of the Zn-Al-Mg coatings in the actual galvanizing process.
基金support of National Science and Technology Support Program (2012BAK08B02)Beijing Institute for Drug Control and Jiangsu Institute for Food and Drug Control for their generous providing of dietary supplements samples.
文摘The application to detect ilally added drugs in dietary supplerments by near-infrared spectral imaging was studied with the focus on nifedipine,diclofenac and metformin.The method is based on near-infrared spectral images correlation cofficient to detect ilally added drugs.The results comply 100%with HPLC methods test results with no false positive results.
文摘The electrochemical reduction of C02 into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on fossil fuels and mitigates the negative impact of anthropogenic C02 emissions on the planet. Although converting CO2 to fuels is not in itself a new concept, the field has not sub- stantially advanced in the last 30 years primarily because of the challenge of discovery of structural electrocatalysts and the development of membrane architectures for efficient collection of reactants and separation of products. This overview summarizes recent advances in catalytic conversion of CO2 and presents the challenges and future directions in producing value-added fuels.
文摘[Objecdve] The aim was to observe the puff-by-puff transfer ratios of some flavors in cigarettes. [Method] Based on national stand- ards, the puff-by-puff transfer of tobacco of carbonyl flavors was analyzed. In the meantime, by dint of simultaneous distillation and extraction equip- ment coupled to GC and GC/MS, the puff-by-puff transfer ratios to TPM of smoke were expounded and compared. [ Result] The puff-by-puff deliv- ery profiles of NFDPT,nicotine and carbon monoxide increased with increasing puff number. This trend was similar to that of particulate matters. The transfer ratio of flavored tobacco was increasing in general, but partial flavors augmented to the maximum value and then decreased slowly. [ Conclusion] The study provided reference for the application of carbonyl compounds in tobacco.