The vortex-based propulsive systems’ enhanced performance greatly contributes to the vortex added-mass effect, which was initially developed to explain the added drag when a solid body accelerates in fluids. However,...The vortex-based propulsive systems’ enhanced performance greatly contributes to the vortex added-mass effect, which was initially developed to explain the added drag when a solid body accelerates in fluids. However, the solution of the instantaneous vortex added-mass coefficient is still remaining a question because vortices always do not have a stable geometric shape like solid bodies. In this paper, the formation of a canonical vortex ring is performed to investigate the nature of vortex added-mass and explore a solution for estimating the vortex added-mass coefficient. The vortex ring is generated by a piston-cylinder apparatus, and the time-dependent flow fields are recorded by particle image velocimetry technique. The ridges of finite-time Lyapunov exponent are applied to identify the Lagrangian boundary of the vortex ring. It is found that a part of the ambient fluids is entrained by the vortex ring when it propagates downstream, resulting in the growth of the vortex ring. Besides, a significant drift of the ambient fluid is observed to bypass the Lagrangian boundary of the vortex ring and reveals the nature of the vortex added-mass. Thus, the added-mass coefficient of the vortex is redefined as the ratio of the volume of the Lagrangian drift fluids in finite time interval step to the vortex volume at that instant. By referring to McPhaden’s method to estimate the added-mass of a solid body, a method based on the multiple material lines with relative-timestep is developed to estimate the volume of Lagrangian drift fluids induced by the vortex added-mass. Then, an empirical criterion for determining the material line number and the finite time interval step is suggested for the vortex ring flow, and the eventual vortex added-mass coefficient calculated by the volume of Lagrangian drift fluids is found to well agree with the results of Brennen. Moreover, the method based on multiple material lines for calculating Lagrangian drift fluids’ volume suggests a potential solution for estimating the added-mass coefficient of arbitrary vortex structures.展开更多
This study proposed a method to obtain hydrodynamic forces and coefficients for a flexible riser undergoing the vortex-induced vibration(VIV), based on the measured strains collected from the scale-model testing with ...This study proposed a method to obtain hydrodynamic forces and coefficients for a flexible riser undergoing the vortex-induced vibration(VIV), based on the measured strains collected from the scale-model testing with the Reynolds numbers ranging from 1.34 E5 to 2.35 E5. The riser is approximated as a tensioned spatial beam, and an inverse method based on the FEM of spatial beam is adopted for the calculation of hydrodynamic forces in the cross flow(CF) and inline(IL) directions. The drag coefficients and vortex-induced force coefficients are obtained through the Fourier Series Theory. Finally, the hydrodynamic characteristics of a flexible riser model undergoing the VIV in a uniform flow are carefully investigated. The results indicate that the VIV amplifies the drag coefficient, and the drag coefficient does not change with time when the CF VIV is stable. Only when the VIVs in the CF and IL directions are all steady vibrations, the vortex-induced force coefficients keep as a constant with time, and under"lock-in" condition, whether the added-mass coefficient changes with time or not, the oscillation frequency of the VIV keeps unchanged. It further shows that the CF excitation coefficients at high frequency are much smaller than those at the dominant frequency, while, the IL excitation coefficients are in the same range. The axial distributions of the excitation and damping region at the dominant frequency and high frequency are approximately consistent in the CF direction, while, in the IL direction, there exists a great difference.展开更多
基金Projects supported by the National Natural Science Foundation of China (Grant Nos.91441205, 91941301)the China Postdoctoral Science Foundation (Grant No.2018M642007).
文摘The vortex-based propulsive systems’ enhanced performance greatly contributes to the vortex added-mass effect, which was initially developed to explain the added drag when a solid body accelerates in fluids. However, the solution of the instantaneous vortex added-mass coefficient is still remaining a question because vortices always do not have a stable geometric shape like solid bodies. In this paper, the formation of a canonical vortex ring is performed to investigate the nature of vortex added-mass and explore a solution for estimating the vortex added-mass coefficient. The vortex ring is generated by a piston-cylinder apparatus, and the time-dependent flow fields are recorded by particle image velocimetry technique. The ridges of finite-time Lyapunov exponent are applied to identify the Lagrangian boundary of the vortex ring. It is found that a part of the ambient fluids is entrained by the vortex ring when it propagates downstream, resulting in the growth of the vortex ring. Besides, a significant drift of the ambient fluid is observed to bypass the Lagrangian boundary of the vortex ring and reveals the nature of the vortex added-mass. Thus, the added-mass coefficient of the vortex is redefined as the ratio of the volume of the Lagrangian drift fluids in finite time interval step to the vortex volume at that instant. By referring to McPhaden’s method to estimate the added-mass of a solid body, a method based on the multiple material lines with relative-timestep is developed to estimate the volume of Lagrangian drift fluids induced by the vortex added-mass. Then, an empirical criterion for determining the material line number and the finite time interval step is suggested for the vortex ring flow, and the eventual vortex added-mass coefficient calculated by the volume of Lagrangian drift fluids is found to well agree with the results of Brennen. Moreover, the method based on multiple material lines for calculating Lagrangian drift fluids’ volume suggests a potential solution for estimating the added-mass coefficient of arbitrary vortex structures.
基金financially supported by the National Natural Science Foundation of China(Grant No.51490674)
文摘This study proposed a method to obtain hydrodynamic forces and coefficients for a flexible riser undergoing the vortex-induced vibration(VIV), based on the measured strains collected from the scale-model testing with the Reynolds numbers ranging from 1.34 E5 to 2.35 E5. The riser is approximated as a tensioned spatial beam, and an inverse method based on the FEM of spatial beam is adopted for the calculation of hydrodynamic forces in the cross flow(CF) and inline(IL) directions. The drag coefficients and vortex-induced force coefficients are obtained through the Fourier Series Theory. Finally, the hydrodynamic characteristics of a flexible riser model undergoing the VIV in a uniform flow are carefully investigated. The results indicate that the VIV amplifies the drag coefficient, and the drag coefficient does not change with time when the CF VIV is stable. Only when the VIVs in the CF and IL directions are all steady vibrations, the vortex-induced force coefficients keep as a constant with time, and under"lock-in" condition, whether the added-mass coefficient changes with time or not, the oscillation frequency of the VIV keeps unchanged. It further shows that the CF excitation coefficients at high frequency are much smaller than those at the dominant frequency, while, the IL excitation coefficients are in the same range. The axial distributions of the excitation and damping region at the dominant frequency and high frequency are approximately consistent in the CF direction, while, in the IL direction, there exists a great difference.