With the increasing penetration of wind power,using wind turbines to participate in the frequency regulation to support power system has become a clear consensus.To accurately quantify the inertia provided by the doub...With the increasing penetration of wind power,using wind turbines to participate in the frequency regulation to support power system has become a clear consensus.To accurately quantify the inertia provided by the doubly-fed induction generator(DFIG)based wind farm,the frequency response model of DFIG with additional frequency control is established,and then by using Routh approximation,the explicit expression of the virtual moment of inertia is derived for the DFIG gridconnected system.To further enhance the availability of the expression,an estimation method is proposed based on the matrix pencil method and the least squares algorithm for estimating the virtual moment of inertia provided by the wind farm.Finally,numerical results tested by a DFIG grid-connected system and a modified IEEE 30-bus system verify the derived expression of the virtual moment of inertia and the proposed estimation method.展开更多
Tall clonal grasses commonly display competitive advantages with nitrogen(N)enrichment.However,it is currently unknown whether the height is derived from the vegetative or reproductive module.Moreover,it is unclear wh...Tall clonal grasses commonly display competitive advantages with nitrogen(N)enrichment.However,it is currently unknown whether the height is derived from the vegetative or reproductive module.Moreover,it is unclear whether the height of the vegetative or reproductive system regulates the probability of extinction and colonization,and determines species diversity.In this study,the impacts on clonal grasses were studied in a field experiment employing two frequencies(twice a year vs.monthly)crossing with nine N addition rates in a temperate grassland,China.We found that the N addition decreased species frequency and increased extinction probability,but did not change the species colonization probability.A low frequency of N addition decreased species frequency and colonization probability,but increased extinction probability.Moreover,we found that species reproductive height was the best index to predict the extinction probability of clonal grasses in N-enriched conditions.The low frequency of N addition may overestimate the negative effect from N deposition on clonal grass diversity,suggesting that a higher frequency of N addition is more suitable in assessing the ecological effects of N deposition.Overall,this study illustrates that reproductive height was associated with the clonal species extinction probability under N-enriched environment.展开更多
When an additional frequency control is implemented in the voltage source converter-based multi-terminal high voltage direct current(VSC-MTDC)system,the DC grid is capable of responding to a frequency disturbance in t...When an additional frequency control is implemented in the voltage source converter-based multi-terminal high voltage direct current(VSC-MTDC)system,the DC grid is capable of responding to a frequency disturbance in the AC system.However,the original additional frequency control may cause the DC voltage to exceed the limit when providing power for a severe frequency disturbance,threatening the security of the DC system.A novel dynamic additional frequency control strategy for the VSC-MTDC system is developed based on the relationship between the DC voltage and the frequency droop coefficient.A dynamic frequency droop coefficient is designed to adaptively adjust the support power of the DC grid,balancing the frequency regulation of the disturbed AC system and the voltage stability of the DC grid.A DC voltage recovery method based on multi-converter cooperation is proposed to cope with the DC voltage deviation caused by the additional frequency control.Simulations validate the advantages and satisfactory performance of the proposed method during power disturbances with different severities and for the process of DC voltage recovery.展开更多
Aims Nitrogen(N)enrichment caused by human activities threatens bio-diversity and alters plant community composition and structure.It has been found that heavy and infrequent N inputs may over-estimate species extinct...Aims Nitrogen(N)enrichment caused by human activities threatens bio-diversity and alters plant community composition and structure.It has been found that heavy and infrequent N inputs may over-estimate species extinction,but it remains unclear whether plant community structure will equally respond to frequent reactive N enriched conditions.Methods We independently manipulated the rates and the frequencies of N addition in a temperate steppe,northern China,between 2008 and 2013.Important Findings We found that plant community structure changes,measured by‘Euclidean distance’involving species richness,composition and productivity,were significantly positively related to increasing N enrichment rates rather than frequencies.Changes in aboveground net primary productivity(ANPP),plant species richness and shifts in dominant species were observed.Community ANPP increased with N enrichment,whereas species richness reduced.The frequency of N enrichment increased species richness but had no impacts on community ANPP and the relative ANPP of the two dominant spe-cies,C3 perennial bunchgrass Stipa grandis and C3 perennial rhi-zome grass Leymus chinensis.The ANPP and relative ANPP of the two dominant species were significantly negatively correlated with each other.Moreover,changes in the relative ANPP of S.grandis was negatively associated with the changes in community structure.After 5 years’treatment,direct influence of the frequency of N en-richment on plant community structure was not observed,but the effects of the rate of N enrichment were apparent.Our results sug-gested that further study in various ecosystems and with long-term and well-controlled comparisons the frequency vs.the rate of N enrichment may still be needed.展开更多
Soil microbial biomass is critical for biogeochemical cycling and serves as precursor for carbon(C)sequestration.The anthropogenic nitrogen(N)input has profoundly changed the pool of soil microbial biomass.However,tra...Soil microbial biomass is critical for biogeochemical cycling and serves as precursor for carbon(C)sequestration.The anthropogenic nitrogen(N)input has profoundly changed the pool of soil microbial biomass.However,traditional N deposition simulation experiments have been exclusively conducted through infrequent N addition,which may have caused biased effects on soil microbial biomass compared with those under the natural and continuous N deposition.Convincing data are still scarce about how the different N addition frequencies affect soil microbial biomass.By independently manipulating the frequencies(2 times vs.12 times N addition yr^(–1))and the rates(0–50 g N m^(−2) yr^(−1))of N addition,our study aimed to examine the response of soil microbial biomass C(MBC)to different N addition frequencies with increasing N addition rates.Soil MBC gradually decreased with increasing N addition rates under both N addition frequencies,while the soil MBC decreased more at low frequency of N addition,suggesting that traditional studies have possibly overestimated the effects of N deposition on soil microbial biomass.The greater soil microbial biomass loss with low N frequency resulted from the intensifed soil acidifcation,higher soil inorganic N,stronger soil C and N imbalance,less net primary production allocated to belowground and lower fungi to bacteria ratio.To reliably predict the effects of atmospheric N deposition on soil microbial functioning and C cycling of grassland ecosystems in future studies,it is necessary to employ both the dosage and the frequency of N addition.展开更多
A method to separate a harmonic signal from multiplicative and additive noises is proposed. The method is to square the signal x(t), which consists of a harmonic signal embedded in multiplicative and additive noises, ...A method to separate a harmonic signal from multiplicative and additive noises is proposed. The method is to square the signal x(t), which consists of a harmonic signal embedded in multiplicative and additive noises, to form another signal y(t) = x2(t)-E[x2(t)]. After y(t) having been gotten, the Fourier transform is imposed on it. Because the information of x(t) (especially about frequency) is included in y(t), the frequency of x(t) can be estimated from the power spectrum of y(t). According to the simulation, under the condition where frequencies divided by resolution dω are integer, the maximum relative error of estimated frequencies is less than 0.4% when the signal-to-noise ratio (SNR) is greater than -23 dB. If frequencies divided by resolution dω are not integer, the maximum relative error will be less than 2.9%. But it is still small in terms of engineering.展开更多
基金This work was supported in part by the National Science Foundation of China(No.51877015)the Science and Technology Foundation of State Grid Corporation of China(No.SGTYHT/19-JS-215).
文摘With the increasing penetration of wind power,using wind turbines to participate in the frequency regulation to support power system has become a clear consensus.To accurately quantify the inertia provided by the doubly-fed induction generator(DFIG)based wind farm,the frequency response model of DFIG with additional frequency control is established,and then by using Routh approximation,the explicit expression of the virtual moment of inertia is derived for the DFIG gridconnected system.To further enhance the availability of the expression,an estimation method is proposed based on the matrix pencil method and the least squares algorithm for estimating the virtual moment of inertia provided by the wind farm.Finally,numerical results tested by a DFIG grid-connected system and a modified IEEE 30-bus system verify the derived expression of the virtual moment of inertia and the proposed estimation method.
基金supported by a grant from the National Natural Science Foundation of China(grant no.32071603 and 32122055)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA26020101)。
文摘Tall clonal grasses commonly display competitive advantages with nitrogen(N)enrichment.However,it is currently unknown whether the height is derived from the vegetative or reproductive module.Moreover,it is unclear whether the height of the vegetative or reproductive system regulates the probability of extinction and colonization,and determines species diversity.In this study,the impacts on clonal grasses were studied in a field experiment employing two frequencies(twice a year vs.monthly)crossing with nine N addition rates in a temperate grassland,China.We found that the N addition decreased species frequency and increased extinction probability,but did not change the species colonization probability.A low frequency of N addition decreased species frequency and colonization probability,but increased extinction probability.Moreover,we found that species reproductive height was the best index to predict the extinction probability of clonal grasses in N-enriched conditions.The low frequency of N addition may overestimate the negative effect from N deposition on clonal grass diversity,suggesting that a higher frequency of N addition is more suitable in assessing the ecological effects of N deposition.Overall,this study illustrates that reproductive height was associated with the clonal species extinction probability under N-enriched environment.
基金supported by the Science and Technology Project of SGCC (SGZJ0000KXJS1900419).
文摘When an additional frequency control is implemented in the voltage source converter-based multi-terminal high voltage direct current(VSC-MTDC)system,the DC grid is capable of responding to a frequency disturbance in the AC system.However,the original additional frequency control may cause the DC voltage to exceed the limit when providing power for a severe frequency disturbance,threatening the security of the DC system.A novel dynamic additional frequency control strategy for the VSC-MTDC system is developed based on the relationship between the DC voltage and the frequency droop coefficient.A dynamic frequency droop coefficient is designed to adaptively adjust the support power of the DC grid,balancing the frequency regulation of the disturbed AC system and the voltage stability of the DC grid.A DC voltage recovery method based on multi-converter cooperation is proposed to cope with the DC voltage deviation caused by the additional frequency control.Simulations validate the advantages and satisfactory performance of the proposed method during power disturbances with different severities and for the process of DC voltage recovery.
基金National Natural Science Foundation of China(NSFC31570469)+2 种基金China Postdoctoral Science Foundation(2015T80153)to Y.Z.,National Key R&D program of China(2016YFC0500202)N.H.,NSFC(41573063)C.W.and National Key R&D program of China(2016YFC0500700)and NSFC(31430016)to X.H.
文摘Aims Nitrogen(N)enrichment caused by human activities threatens bio-diversity and alters plant community composition and structure.It has been found that heavy and infrequent N inputs may over-estimate species extinction,but it remains unclear whether plant community structure will equally respond to frequent reactive N enriched conditions.Methods We independently manipulated the rates and the frequencies of N addition in a temperate steppe,northern China,between 2008 and 2013.Important Findings We found that plant community structure changes,measured by‘Euclidean distance’involving species richness,composition and productivity,were significantly positively related to increasing N enrichment rates rather than frequencies.Changes in aboveground net primary productivity(ANPP),plant species richness and shifts in dominant species were observed.Community ANPP increased with N enrichment,whereas species richness reduced.The frequency of N enrichment increased species richness but had no impacts on community ANPP and the relative ANPP of the two dominant spe-cies,C3 perennial bunchgrass Stipa grandis and C3 perennial rhi-zome grass Leymus chinensis.The ANPP and relative ANPP of the two dominant species were significantly negatively correlated with each other.Moreover,changes in the relative ANPP of S.grandis was negatively associated with the changes in community structure.After 5 years’treatment,direct influence of the frequency of N en-richment on plant community structure was not observed,but the effects of the rate of N enrichment were apparent.Our results sug-gested that further study in various ecosystems and with long-term and well-controlled comparisons the frequency vs.the rate of N enrichment may still be needed.
基金supported by the National Natural Science Foundation of China(42130515 and31770506)the Open Foundation of the State Key Laboratory of Urban and Regional Ecology of Chinathe Open Foundation of the State Key Laboratory of Grassland Agro-ecosystems of China。
文摘Soil microbial biomass is critical for biogeochemical cycling and serves as precursor for carbon(C)sequestration.The anthropogenic nitrogen(N)input has profoundly changed the pool of soil microbial biomass.However,traditional N deposition simulation experiments have been exclusively conducted through infrequent N addition,which may have caused biased effects on soil microbial biomass compared with those under the natural and continuous N deposition.Convincing data are still scarce about how the different N addition frequencies affect soil microbial biomass.By independently manipulating the frequencies(2 times vs.12 times N addition yr^(–1))and the rates(0–50 g N m^(−2) yr^(−1))of N addition,our study aimed to examine the response of soil microbial biomass C(MBC)to different N addition frequencies with increasing N addition rates.Soil MBC gradually decreased with increasing N addition rates under both N addition frequencies,while the soil MBC decreased more at low frequency of N addition,suggesting that traditional studies have possibly overestimated the effects of N deposition on soil microbial biomass.The greater soil microbial biomass loss with low N frequency resulted from the intensifed soil acidifcation,higher soil inorganic N,stronger soil C and N imbalance,less net primary production allocated to belowground and lower fungi to bacteria ratio.To reliably predict the effects of atmospheric N deposition on soil microbial functioning and C cycling of grassland ecosystems in future studies,it is necessary to employ both the dosage and the frequency of N addition.
基金the National Natural Foundation of China(No.59635140).
文摘A method to separate a harmonic signal from multiplicative and additive noises is proposed. The method is to square the signal x(t), which consists of a harmonic signal embedded in multiplicative and additive noises, to form another signal y(t) = x2(t)-E[x2(t)]. After y(t) having been gotten, the Fourier transform is imposed on it. Because the information of x(t) (especially about frequency) is included in y(t), the frequency of x(t) can be estimated from the power spectrum of y(t). According to the simulation, under the condition where frequencies divided by resolution dω are integer, the maximum relative error of estimated frequencies is less than 0.4% when the signal-to-noise ratio (SNR) is greater than -23 dB. If frequencies divided by resolution dω are not integer, the maximum relative error will be less than 2.9%. But it is still small in terms of engineering.