Using the fixed point and direct methods, we prove the Hyers-Ulam stability of the following Cauchy-Jensen additive functional equation 2f(p∑i=1xi+q∑j=1yj+2d∑k=1zk/2)=p∑i=1f(xi)+q∑j=1f(yj)+2d∑k=1f(zk...Using the fixed point and direct methods, we prove the Hyers-Ulam stability of the following Cauchy-Jensen additive functional equation 2f(p∑i=1xi+q∑j=1yj+2d∑k=1zk/2)=p∑i=1f(xi)+q∑j=1f(yj)+2d∑k=1f(zk),where p, q, d are integers greater than 1, in non-Archimedean normed spaces.展开更多
In this paper,using the fixed-point and direct methods,we prove the HyersUlam stability of the following m-Appolonius type functional equation:∑mi=1 f(z-xi)=mf(z-1/m2∑mi=1xi)-1/m∑1≤i〈j≤mf(xi+xj),where m ...In this paper,using the fixed-point and direct methods,we prove the HyersUlam stability of the following m-Appolonius type functional equation:∑mi=1 f(z-xi)=mf(z-1/m2∑mi=1xi)-1/m∑1≤i〈j≤mf(xi+xj),where m is a natural number greater than 1,in random normed spaces. 更多还原展开更多
The intention of this paper is to study new additive kind multi-dimensional functional equations inspired by several applications of difference equations in biology,control theory,economics,and computer science,as wel...The intention of this paper is to study new additive kind multi-dimensional functional equations inspired by several applications of difference equations in biology,control theory,economics,and computer science,as well as notable implementation of fuzzy ideas in certain situations involving ambiguity or vagueness.In the context of different fuzzy spaces,we demonstrate their various fundamental stabilities related to Ulam stability theory.An appropriate example is given to show how stability result fails when the singular case occurs.The findings of this study suggest that stability results are valid in situations with uncertain or imprecise data.The stability results obtained under these fuzzy spaces are compared with previous stability results.展开更多
In this paper,we construct the addition formulae for several integrable hierarchies,including the discrete KP,the q-deformed KP,the two-component BKP and the D type Drinfeld–Sokolov hierarchies.With the help of the H...In this paper,we construct the addition formulae for several integrable hierarchies,including the discrete KP,the q-deformed KP,the two-component BKP and the D type Drinfeld–Sokolov hierarchies.With the help of the Hirota bilinear equations and τ functions of different kinds of KP hierarchies,we prove that these addition formulae are equivalent to these hierarchies.These studies show that the addition formula in the research of the integrable systems has good universality.展开更多
文摘Using the fixed point and direct methods, we prove the Hyers-Ulam stability of the following Cauchy-Jensen additive functional equation 2f(p∑i=1xi+q∑j=1yj+2d∑k=1zk/2)=p∑i=1f(xi)+q∑j=1f(yj)+2d∑k=1f(zk),where p, q, d are integers greater than 1, in non-Archimedean normed spaces.
文摘In this paper,using the fixed-point and direct methods,we prove the HyersUlam stability of the following m-Appolonius type functional equation:∑mi=1 f(z-xi)=mf(z-1/m2∑mi=1xi)-1/m∑1≤i〈j≤mf(xi+xj),where m is a natural number greater than 1,in random normed spaces. 更多还原
基金The second author is supported by the Science and Engineering Research Board(SERB)of India(MTR/2020/000534).
文摘The intention of this paper is to study new additive kind multi-dimensional functional equations inspired by several applications of difference equations in biology,control theory,economics,and computer science,as well as notable implementation of fuzzy ideas in certain situations involving ambiguity or vagueness.In the context of different fuzzy spaces,we demonstrate their various fundamental stabilities related to Ulam stability theory.An appropriate example is given to show how stability result fails when the singular case occurs.The findings of this study suggest that stability results are valid in situations with uncertain or imprecise data.The stability results obtained under these fuzzy spaces are compared with previous stability results.
基金Supported by the Zhejiang Provincial Natural Science Foundation under Grant No.LY15A010004the National Natural Science Foundation of China under Grant Nos.11201251,11571192+2 种基金the Natural Science Foundation of Ningbo under Grant No.2015A610157supported by the National Natural Science Foundation of China under Grant No.11271210K.C.Wong Magna Fund in Ningbo University
文摘In this paper,we construct the addition formulae for several integrable hierarchies,including the discrete KP,the q-deformed KP,the two-component BKP and the D type Drinfeld–Sokolov hierarchies.With the help of the Hirota bilinear equations and τ functions of different kinds of KP hierarchies,we prove that these addition formulae are equivalent to these hierarchies.These studies show that the addition formula in the research of the integrable systems has good universality.