Adenosine triphosphate(ATP)induced cell death(AICD)is a critical cellular process that has garnered substantial scientific interest for its profound relevance to cancer biology and to therapeutic interventions.This co...Adenosine triphosphate(ATP)induced cell death(AICD)is a critical cellular process that has garnered substantial scientific interest for its profound relevance to cancer biology and to therapeutic interventions.This comprehensive review unveils the intricate web of AICD mechanisms and their intricate connections with cancer biology.This review offers a comprehensive framework for comprehending the multifaceted role of AICD in the context of cancer.This is achieved by elucidating the dynamic interplay between systemic and cellular ATP homeostasis,deciphering the intricate mechanisms governing AICD,elucidating its intricate involvement in cancer signaling pathways,and scrutinizing validated key genes.Moreover,the exploration of AICD as a potential avenue for cancer treatment underscores its essential role in shaping the future landscape of cancer therapeutics.展开更多
After hypoxia, ischemia, or inflammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cel...After hypoxia, ischemia, or inflammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cell death that also has neuroprotective effects. Cell Counting Kit assay, monodansylcadaverine staining, flow cytometry, western blotting, and real-time PCR were used to determine the effects of exogenous adenosine triphosphate treatment at different concentrations (2, 4, 6, 8, 10 mmol/L) over time (1, 2, 3, and 6 hours) on the apoptosis and autophagy of SH-SY5Y cells. High concentrations of extracellular adenosine triphosphate induced autophagy and apoptosis of SH-SYSY cells. The enhanced autophagy first appeared, and peaked at 1 hour after treatment with adenosine triphosphate. Cell apoptosis peaked at 3 hours, and persisted through 6 hours. With prolonged exposure to the adenosine triphosphate treatment, the fraction of apoptotic cells increased. These data suggest that the SH-SY5Y neural cells initiated autophagy against apoptosis within an hour of adenosine triphosphate treatment to protect themselves against injury.展开更多
AIM: To study the growth inhibitory effects of ATP on TE-13 human squamous esophageal carcinoma cellsin vitro.METHODS: NTT assay was used to determine the inhibition of proliferation of ATP or adenosine (ADO) on T...AIM: To study the growth inhibitory effects of ATP on TE-13 human squamous esophageal carcinoma cellsin vitro.METHODS: NTT assay was used to determine the inhibition of proliferation of ATP or adenosine (ADO) on TE-13 cell line. The morphological changes of TE-13 cells induced by ATP or ADO were observed under fluorescence light microscope by acridine orange (AO)/ethidium bromide (EB) double stained cells. The intemudeosomal fragmentation of genomic DNA was detected by agarose gel electrophoresis. The apoptotic rate and cell cycle after treatment with ATP or ADO were determined by flow cytometry.RESULTS: ATP and ADO produced inhibitory effects on TE-13 cells at the concentration between 0.01 and 1.0 mmol/L. The ICs0 of TE-13 cells exposed to ATP or ADO for 48 and 72 h was 0.71 or 1.05, and 0.21 or 0.19 mmol/L, respectively. The distribution of cell cycle phase and proliferation index (PI) value of TE-13 cells changed, when being exposed to ATP or ADO at the concentrations of 0.01, 0.1, and 1 mmol/L for 48 h. ATP and ADO inhibited the cell proliferation by changing the distribution of cell cycle phase via either G0/G1 phase (ATP or ADO, 1 mmol/L) or S phase (ATP, 0.1 mmol/L) arrest. Under light microscope, the tumor cells exposed to 0.3 mmol/L ATP or ADO displayed morphological changes of apoptosis. A ladder-like pattern of DNA fragmentation was obtained from TE-13 cells treated with 0.1-1 mmol/L ATP or ADO in agarose gel electrophoresis. ATP and ADO induced apoptosis of TE-13 cells in a dose-dependent manner at the concentration between 0.03 and 1 mmol/L. The maximum apoptotic rate of TE-13 cells exposed to ATP or ADO for 48 h was 16.63% or 16.9%, respectively.CONCLUSION: ATP and ADO inhibit cell proliferation, arrest cell cycle, and induce apoptosis of TE-13 cell line.展开更多
AIM:To clarify the protective effect of exogenous adenosine triphosphate(ATP)on hypothermically preserved rat livers. METHODS:Establishment of continuous hypothermic machine perfusion model,detection of nucleotides in...AIM:To clarify the protective effect of exogenous adenosine triphosphate(ATP)on hypothermically preserved rat livers. METHODS:Establishment of continuous hypothermic machine perfusion model,detection of nucleotides in hepatocytes with HPLC,measurement of activities of LDH and AST in the perfusate,observation of histopathological changes in different experiment groups,and autoradiography were carried out to reveal the underlying mechanism of the protective effect of ATP. RESULTS:The intracellular levels of ATP and EC decreased rapidly after hypothermic preservation in control group,while a higher ATP and EC level,and a slower decreasing rate were observed when ATP-MgCl_2 was added to the perfusate (P<0.01).As compared with the control group,the activities of LDH and AST in the ATP-MgCl_2 group were lower(P<0.05). Furthermore,more severe hepatocyte damage and neutrophil infiltration were observed in the control group.Radioactive [α-^(32)P]ATP entered the hypothermically preserved rat hepatocytes. CONCLUSION:Exogenous ATP has a protective effect on rat livers during hypothermical preservation.However,Mg^(2+) is indispensable,addition of ATP alone produces no protective effect.The underlying mechanism may be that exogenous ATP enters the hypothermically preserved rat liver cells.展开更多
The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord ...The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord injury, rat models of spinal cord injury were established by modified Allen's stall method and interfered for 7 days by intraperitoneal administration of mTOR activator adenosine triphosphate and mTOR kinase inhibitor rapamycin. At 1-4 weeks after spinal cord injury induction, the Basso, Beattie and Bresnahan locomotor rating scale was used to evaluate rat locomotor function, and immunohistochemical staining and western blot analysis were used to detect the expression of nestin (neural stem cell marker), neuronal nuclei (neuronal marker), neuron specific enolase, neurofilament protein 200 (axonal marker), glial fibrillary acidic protein (astrocyte marker), Akt, mTOR and signal transduction and activator of transcription 3 (STAT3). Results showed that adenosine triphosphate-mediated Akt/mTOR/STAT3 pathway increased endogenous neural stem cells, induced neurogenesis and axonal growth, inhibited excessive astrogliosis and improved the locomotor function of rats with spinal cord injury.展开更多
In this study,we aimed at developing an efficient biocatalytic process for bio-production of cyclic adenosine monophosphate(c AMP)from adenosine triphosphate(ATP).First,adenylate cyclase from Escherichia coli MG1655(E...In this study,we aimed at developing an efficient biocatalytic process for bio-production of cyclic adenosine monophosphate(c AMP)from adenosine triphosphate(ATP).First,adenylate cyclase from Escherichia coli MG1655(EAC)and Bordetella Pertussis(BAC)were expressed in E.coli BL21(DE3)and comparatively analyzed for their activities.As a result,EAC from E.coli MG1655 exhibited a higher activity.However,amount of EAC were obtained in an insoluble form.Therefore,we expressed the first 446 amino acids of EAC(EAC446)to avoid the inclusion body.The effects of induction temperature,incubation time,and incubation p H were further evaluated to improve the expression of EAC446.Subsequently,the reaction process for the production of c AMP with ATP as a starting material was investigated.As none of c AMP was detected in the whole-cell based biocatalytic process,the reaction catalyzed by the crude enzyme was determined for c AMP production.What's more,the reaction temperature,reaction p H,metal ion additives and substrate concentration was optimized,and the maximum c AMP production of 18.45 g·L^-1was achieved with a yield of 95.4%after bioconversion of 6 h.展开更多
Nicotinamide adenine dinucleotide (NAD) oscillation was observed when the isolated mitochondria were immersed in a pyruvate solution. In addition, when an adenosine diphosphate (ADP) was added to the mitochondrial sus...Nicotinamide adenine dinucleotide (NAD) oscillation was observed when the isolated mitochondria were immersed in a pyruvate solution. In addition, when an adenosine diphosphate (ADP) was added to the mitochondrial suspension containing pyruvate, adenosine triphosphate (ATP) oscillation was observed as well as NADH oscillation. At this time, the pH within mitochondria also oscillated. It was found that the oscillatory reaction of NADH caused by the membrane permeation of pyruvate continues, causing the oscillation of NADH and H+ in the subsequent reactions. The pH oscillation led to the ATP oscillation. It is considered that the oscillatory reaction caused by the gradual entry of pyruvate into mitochondria was thought to be carried over to both the citric acid cycle and the respiratory chain, ultimately leading to the ATP oscillation in oxidative phosphorylation. Similarly, it was found that membrane permeation of malate causes the gradual occurrence of NADH, at which point NADH oscillates, followed by an oscillatory reaction of the respiratory chain, and finally ATP oscillation. It was found that the oscillations of NADH and ATP occur without going through the citric acid cycle. Oscillations of NADH and other intermediates in both the citric acid cycle and respiratory chain were also confirmed by experiments using semipermeable membranes. These results support our hypothesis that the gradual entry of the substrate by membrane permeation triggers an oscillatory reaction of the enzyme, which is also carried over to subsequent reactions.展开更多
There are various strategies to conduct tumor microenvironment(TME)stimulus-responsive(e.g.,acid,H_(2)O_(2)or glutathione)nanoreactors for increasing the efficiency of chemodynamic therapy(CDT).Among these,the exploit...There are various strategies to conduct tumor microenvironment(TME)stimulus-responsive(e.g.,acid,H_(2)O_(2)or glutathione)nanoreactors for increasing the efficiency of chemodynamic therapy(CDT).Among these,the exploitation of adenosine triphosphate(ATP,another overexpressed biomarker in TME)-responsive nanoreactors for tumor CDT is still challenging.Herein,the ATP-responsive iron-doped CDs(FeCDs)were firstly prepared and then coassembled with glucose oxidase(GOx)to obtain FeCDs/GOx liposomes as ATP-responsive nanoreactors.Under TME conditions,the nanoreactors initially released FeCDs and GOx.Subsequently,with the existence of ATP,iron ions were rapidly released from the FeCDs to trigger Fenton/Fenton-like reactions for generating·OH.Meanwhile,the T_(1)-weighted magnetic resonance imaging(MRI)was achieved due to the released iron ions.Moreover,the GOx converted endogenous glucose in tumor to gluconic acid and H_(2)O_(2)to satisfy the requirement of·OH generation.In vitro as well as in vivo experiments illustrated that the obtained ATP-responsive CD nanoreactors could be used as a versatile nanotheranostics for simultaneously T_(1)-weighted MRI-guided tumor CDT.This work presents a new ATP-responsive nanoreactor with selfsupplied H_(2)O_(2)for multifunctional nanotheranostic applications.展开更多
OBJECTIVE:To investigate the mechanisms behind the effects of acupuncture in Traditional Chinese Medicine,we delved into the adenosine triphosphate/peripheral purinergic P2X receptor 3(ATP/P2X3)receptor signaling syst...OBJECTIVE:To investigate the mechanisms behind the effects of acupuncture in Traditional Chinese Medicine,we delved into the adenosine triphosphate/peripheral purinergic P2X receptor 3(ATP/P2X3)receptor signaling system as an indicator of the body's energy state,commonly referred to as"Qi".METHODS:The tail-flick test was utilized to explore the impact of acupuncture on pain tolerance threshold(PTT)in mice,while also assessing adenosine(ADO)levels and adenylate energy charge(EC)at Zusanli(ST36).The study further investigated the dose-dependent effects of acupuncture on PTT and ADO levels at Zusanli(ST36).To shed light on the underlying mechanisms of acupuncture's effects,the study examined the impact of ATP,a P2X3 receptor antagonist,and adenosine disodium on PTT following acupuncture administration.RESULTS:Acupuncture at Zusanli(ST36)led to significant improvements in PTT in mice,with the most effective interventions being twirling for 2 min and needle retention for 28 min.These interventions also resulted in significant increases in ATP levels.The effects of acupuncture were further augmented by administration of different doses of ATP at Zusanli(ST36),and pretreatment with a P2X3 receptor antagonist decreased PTT.Adenylate EC peaked at 30 min after intraperitoneal injection of ATP,and pretreatment with various doses of i.p.ATP 30 min prior to acupuncture increased PTT in a dose-dependent manner.Additionally,pretreatment with an i.p.or intramuscular injection of adenosine disodium enhanced the effects of acupuncture.CONCLUSION:This research provides compelling evidence that ATP is involved in the regulation of PTT through acupuncture,revealing new avenues for achieving enhanced clinical outcomes.展开更多
Background Repetitive transcranial magnetic stimulation (rTMS) research has mainly been focused on the therapeutic effect of psychiatric disorders and Parkinson's disease. A few studies have shown that rTMS might p...Background Repetitive transcranial magnetic stimulation (rTMS) research has mainly been focused on the therapeutic effect of psychiatric disorders and Parkinson's disease. A few studies have shown that rTMS might protect against delayed neuronal death induced by transient ischemia, enhance long-term potentiation in ischemic conditions and affect regional brain blood flow and metabolism. The aim of this study was to determine the effects of repetitive transcranial magnetic stimulation (rTMS) on adenosine triphosphate (ATP) content and microtubule associated protein-2 (MAP-2) expression in rat brain after middle cerebral artery occlusion (MCAO)/reperfusion. Methods To study the effects of different timecourses of rTMS on ATP content and MAP-2 expression, 90 rats were randomly divided into three groups (30 rats in each group). To study the effects of multiple rTMS parameters on ATP content and MAP-2 expression, the rats in each group were further divided into six subgroups (five rats each). The rats were sacrificed at 1-hour, 24-hour and 48-hour intervals after reperfusion, and the brain tissues were collected for the detection of ATP and MAP-2. Results rTMS could significantly increase ATP content and MAP-2 expression in the left brain following ischemic insult (P 〈0.01) and different rTMS parameters had different effects on the ATP level and the MAP-2 expression in the left striatum. A high-frequency rTMS played an important role in MAP-2 expression and ATP preservation. Conclusions This study revealed that rTMS induced significant increase of ATP content and MAP-2 expression in the injured area of the brain, suggesting that the regulation of both ATP and MAP-2 may be involved in the biological mechanism of the effect of rTMS on neural recovery. Therefore, rTMS may become a potential adjunctive therapy for ischemic cerebrovascular disease.展开更多
OBJECTIVE:To investigate the role of adenosine triphosphate(ATP) purinergic signaling in mast cells(MCs) modulated by heat to further understand the molecular mechanisms of moxibustion.METHODS:Skin temperatures induce...OBJECTIVE:To investigate the role of adenosine triphosphate(ATP) purinergic signaling in mast cells(MCs) modulated by heat to further understand the molecular mechanisms of moxibustion.METHODS:Skin temperatures induced by monkshood cake moxibustion were evaluated by measuring the Neiguan acupoint(PC 6) from 31 participants with a digital thermocouple thermometer.Temperatures of 43 ℃ and 52 ℃ were applied to cultured human leukemia mast cell line HMC-1 in vitro.Calcium fluorescence was applied to detect intracellular Ca^(2+)([Ca^(2+)]_i).Extracellular ATP contents were measured by luciferin-luciferase assay.RESULTS:Maximum skin temperatures mostly ranged from 40-45 ℃,but some reached up to50 ℃.Both 43 ℃,and 52 ℃ induced MC degranulation,which was accompanied by an increase in[Ca^(2+)]_i and ATP release.Complexing extracellular Ca^(2+) with 5 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid(EGTA) inhibited the noxious heat-induced elevation of[Ca^(2+)]_i and prevented the enhanced ATP secretion by those cells at 52℃ but not 43 ℃.CONCLUSION:Monkshood cake moxibustion can generate heat sufficient to trigger cellular events of MCs,including degranulation,[Ca^(2+)]_i elevation,and ATP release,suggesting that purinergic signals originating from MCs are possibly the initiating response of acupoints to moxibustion.展开更多
In this work,polymethacrylic acid(PMAA)-templated silver nanoclusters(Ag NCs)were developed as the fluorescent probe for the efficient and sensitive detection of adenosine triphosphate(ATP)in a wide range of pH values...In this work,polymethacrylic acid(PMAA)-templated silver nanoclusters(Ag NCs)were developed as the fluorescent probe for the efficient and sensitive detection of adenosine triphosphate(ATP)in a wide range of pH values.The fluorescence intensity of the Ag NCs could keep stable with pH values ranging from2.5 to 9.3.The detection of ATP was based on the quenching of the fluorescent Ag NCs in the presence of ATP.The fluorescence quenching of the Ag NCs with increasing ATP concentration was studied at pH 2.5,4.5,7.0 and 8.5 which involved a wide pH environment in body fluids.The limit of detection(LOD)for ATP was as low as 0.1 mmol/L in an acidic environment with pH of 2.5 and all the linear correlation coefficients were satisfactory under wide-span pH values from 2.5 to 8.5.In addition,the sensitive determination of ATP was also achieved by adding copper ions(Cu^2+).The high selectivity and rapid detection process proved that the fluorescent probe had great potential to detect ATP in biological samples under different pH conditions.展开更多
Transmembrane transport plays an important role in many physiological functions,and mimicking this biological process in artificial systems has potential applications in biosensing,drug delivery,and bionic science.Her...Transmembrane transport plays an important role in many physiological functions,and mimicking this biological process in artificial systems has potential applications in biosensing,drug delivery,and bionic science.Here,a lipophilic split aptamer was developed as a novel transmembrane carrier for adenosine triphosphate(ATP)transport.The ATP carrier comprises two split aptamer fragments and cholesterol tags,with the split aptamers acting as targetrecognition domains to enhance their specific binding capability and the cholesterol tags as hydrophobic domains to facilitate membrane penetration.Giant unilamellar vesicle experiments demonstrated that the ATP carrier-mediated transmembrane transport was concentration-and time-dependent and showed high transport selectivity.Moreover,the artificial carriers were applicable to living cells and facilitated rapid cell internalization of fluorescencelabeled ATP.Furthermore,carrier-mediated ATP transport into ATP-deficient cells enabled recovery of cellular ATP levels and improved cell viability.This study demonstrated the efficacy of an aptamer nanostructure for designing DNA-based synthetic carriers with high selectivity and flexibility.展开更多
The activation of adenosine A1 receptors is important for protecting against ischemic brain injury and pretreatment with electroacupuncture has been shown to mitigate ischemic brain insult. The aim of this study was t...The activation of adenosine A1 receptors is important for protecting against ischemic brain injury and pretreatment with electroacupuncture has been shown to mitigate ischemic brain insult. The aim of this study was to test whether the adenosine A1 receptor mediates electroacupuncture pretreatment-induced neuroprotection against ischemic brain injury. We first performed 30 minutes of electroacupuncture pretreatment at the Baihui acupoint(GV20), delivered with a current of 1 mA, a frequency of 2/15 Hz, and a depth of 1 mm. High-performance liquid chromatography found that adenosine triphosphate and adenosine levels peaked in the cerebral cortex at 15 minutes and 120 minutes after electroacupuncture pretreatment, respectively. We further examined the effect of 15 or 120 minutes electroacupuncture treatment on ischemic brain injury in a rat middle cerebral artery-occlusion model. We found that at 24 hours reperfusion,120 minutes after electroacupuncture pretreatment, but not for 15 minutes, significantly reduced behavioral deficits and infarct volumes. Last, we demonstrated that the protective effect gained by 120 minutes after electroacupuncture treatment before ischemic injury was abolished by pretreatment with the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine(1 mg/kg, intraperitoneally). Our results suggest that pretreatment with electroacupuncture at the Baihui acupoint elicits protection against transient cerebral ischemia via action at adenosine A1 receptors.展开更多
Traumatic spinal cord injuries interrupt the connection of all axonal projections with their neuronal targets below and above the lesion site. This interruption results in either temporary or permanent alterations in ...Traumatic spinal cord injuries interrupt the connection of all axonal projections with their neuronal targets below and above the lesion site. This interruption results in either temporary or permanent alterations in the locomotor, sensory, and autonomic functions. Damage in the spinal tissue prevents the re-growth of severed axons across the lesion and their reconnection with neuronal targets. Therefore, the absence of spontaneous repair leads to sustained impairment in voluntary control of movement below the injury. For decades, axonal regeneration and reconnection have been considered the opitome of spinal cord injury repair with the goal being the repair of the damaged long motor and sensory tracts in a complex process that involves:(1) resealing injured axons;(2) reconstructing the cytoskeletal structure inside axons;(3) re-establishing healthy growth cones;and(4) assembling axonal cargos. These biological processes require an efficient production of adenosine triphosphate, which is affected by mitochondrial dysfunction after spinal cord injury. From a pathological standpoint, during the secondary stage of spinal cord injury, mitochondrial homeostasis is disrupted, mainly in the distal segments of severed axons. This result in a reduction of adenosine triphosphate levels and subsequent inactivation of adenosine triphosphate-dependent ion pumps required for the regulation of ion concentrations and reuptake of neurotransmitters, such as glutamate. The consequences are calcium overload, reactive oxygen species formation, and excitotoxicity. These events are intimately related to the activation of necrotic and apoptotic cell death programs, and further exacerbate the secondary stage of the injury, being a hallmark of spinal cord injury. This is why restoring mitochondrial function during the early stage of secondary injury could represent a potentially effective therapeutic intervention to overcome the motor and sensory failure produced by spinal cord injury. This review discusses the most recent evidence linking mitochondrial dysfunction with axonal regeneration failure in the context of spinal cord injury. It also covers the future of mitochondria-targeted therapeutical approaches, such as antioxidant molecules, removing mitochondrial anchor proteins, and increasing energetic metabolism through creatine treatment. These approaches are intended to enhance functional recovery by promoting axonal regenerationreconnection after spinal cord injury.展开更多
AIM: To evaluate the protective effects of preconditioning by α-lipoic acid (LA) in patients undergoing hepatic resection under inflow occlusion of the liver. METHODS: Twenty-four patients undergoing liver resect...AIM: To evaluate the protective effects of preconditioning by α-lipoic acid (LA) in patients undergoing hepatic resection under inflow occlusion of the liver. METHODS: Twenty-four patients undergoing liver resection for various reasons either received 600 mg LA or NaCI 15 min before transection performed under inflow occlusion of the liver. Blood samples and liver wedge biopsy samples were obtained after opening of the abdomen immediately after inflow occlusion of the liver, and 30 min after the end of inflow occlusion of the liver. RESULTS: Serum levels of aspartate transferase and alanine transferase were reduced at all time points in patients who received LA in comparison to those who received NaCL. This was accompanied by reduced histomorphological features of oncosis. We observed TUNEL-positive hepatocytes in the livers of the untreated patients, especially after 30 min of ischemia. LA attenuated this increase of TUNEL-positive hepatocytes. Under preconditioning with LA, ATP content was significantly enhanced after 30 min of ischemia and after 30 min of reperfusion. CONCLUSION: This is the first report on the potential for LA reducing ischemia/reperfusion injury (IRI) of the liver in humans who were undergoing liver surgery. Beside its simple and rapid application, side effects did not occur. LA might therefore represent a new strategy against hepatic IRI in humans.展开更多
In our previous study, we found that the edible alcohol extract of the root of the medicinal plant Rhodiola crenulata(RCE) improved spatial cognition in a rat model of Alzheimer's disease. Another study from our la...In our previous study, we found that the edible alcohol extract of the root of the medicinal plant Rhodiola crenulata(RCE) improved spatial cognition in a rat model of Alzheimer's disease. Another study from our laboratory showed that RCE enhanced neural cell proliferation in the dentate gyrus of the hippocampus and prevented damage to hippocampal neurons in a rat model of chronic stress-induced depression. However, the mechanisms underlying the neuroprotective effects of RCE are unclear. In the present study, we investigated the anti-apoptotic effect of RCE and its neuroprotective mechanism of action in a rat model of Alzheimer's disease established by intracerebroventricular injection of streptozotocin. The rats were pre-administered RCE at doses of 1.5, 3.0 or 6.0 g/kg for 21 days before model establishment. ATP and cytochrome c oxidase levels were significantly decreased in rats with Alzheimer's disease. Furthermore, neuronal injury was obvious in the hippocampus, with the presence of a large number of apoptotic neurons. In comparison, in rats given RCE pretreatment, ATP and cytochrome c oxidase levels were markedly increased, the number of apoptotic neurons was reduced, and mitochondrial injury was mitigated. The 3.0 g/kg dose of RCE had the optimal effect. These findings suggest that pretreatment with RCE prevents mitochondrial dysfunction and protects hippocampal neurons from apoptosis in rats with Alzheimer's disease.展开更多
Aim: To investigate the possible role of manganese in the regulation of mitochondrial aconitase (mACON) activity human prostate carcinoma cell line PC-3 cells. Methods: The mACON enzymatic activities of human pros...Aim: To investigate the possible role of manganese in the regulation of mitochondrial aconitase (mACON) activity human prostate carcinoma cell line PC-3 cells. Methods: The mACON enzymatic activities of human prostate carcinoma cell line PC-3 cells were determined using a reduced nicotinamide adenine dinucleotide-coupled assay. Immunoblot and transient gene expression assays were used to study gene expression of the mACON. The putative response element for gene expression was identified using reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays. Results: In vitro study revealed that manganese chloride (MnCI2) treatment for 16 h inhibited the enzymatic activity of mACON, which induced the inhibition of citrate utility and cell proliferation of PC- 3 cells. Although results from transient gene expression assays showed that MnCI2 treatment upregulated gene translation by approximately 5-fold through the iron response element pathway, immunoblot and reporter assays showed that MnCl2 treatments inhibited protein and gene expression of mACON. This effect was reversed by cotreatment with ferric ammonium citrate. Additional reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays suggested that a putative metal response element in the promoter of the mACON gene was involved in the regulation of MnCh on the gene expression of mACON. Conclusion: These findings suggest that manganese acts as an antagonist of iron, disrupting the enzymatic activity and gene expression of mACON and citrate metabolism in the prostate.展开更多
AIM: To compare the features of biochemical metabolic changes detected by hepatic phosphorus-31 magnetic resonance spectroscopy (^31p MRS) with the liver damage score (LDS) and pathologic changes in rabbits and t...AIM: To compare the features of biochemical metabolic changes detected by hepatic phosphorus-31 magnetic resonance spectroscopy (^31p MRS) with the liver damage score (LDS) and pathologic changes in rabbits and to investigate the diagnostic value of ^31p MRS in acute hepatic radiation injury. METHODS: A total of 30 rabbits received different radiation doses (ranging 5-20 Gy) to establish acute hepatic injury models. Blood biochemical tests, ^31p MRS and pathological examinations were carried out 24 h after irradiation. The degree of injury was evaluated according to LD5 and pathology. Ten healthy rabbits served as controls. The MR examination was performed on a 1.5 T imager using a 1H/^31P surface coil by the 2D chemical shift imaging technique. The relative quantities of phosphomonoesters (PME), phosphodiesters (PDE), inorganic phosphate (Pi) and adenosine triphosphate (ATP) were measured. The data were statistically analyzed. RESULTS: (1) Relative quantification of phosphorus metabolites: (a) ATP: there were significant differences (P 〈 0.05) (LDS-groups:control group vs mild group vs moderate group vs severe group, 1.83±0.33 vs 1.55±0.24 vs 1.27±0.09 vs 0.98±0.18; pathological groups: control group vs mild group vs moderate group vs severe group, 1.83±0.33 vs 1.58±0.25 vs 1.32±0.07 vs 1.02±0.18) of ATP relative quantification among control group, mild injured group, moderate injured group, and severe injured group according to both LDS grading and pathological grading, respectively, and it decreased progressively with the increased degree of injury (r = -0.723, P = 0.000). (b) PME and Pi; the relative quantification of PME and Pi decreased significantly in the severe injured group, and the difference between the control group and severe injured group was significant (P 〈 0.05) (PME: 1DS- control group vs LDS-severe group, 0.86±0.23 vs 0.58±0.22, P = 0.031; pathological control group vs pathological severe group, 0.86±0.23 vs 0.60±0.21, P = 0.037; Pi: LDS-control group vs LDS-severe group, 0.74±0.18 vs 0.43±0.14, P = 0.013; pathological control group vs pathological severe group, 0.74±0.18 vs 0.43±0.14, P = 0.005) according to LDS grading and pathological grading, respectively. (c) PDE; there were no significant differences among groups according to LDS grading, and no significant differences between the control group and experimental groups according to pathological grading. (2) The ratio of relative quantification of phosphorus metabolites: significant differences (P 〈 0.05) (LDS- moderate group and LDS-severe group vs LDS-control group and LDS-mild group, 1.94±0.50 and 1.96±0.72 vs 1.43±0.31 and 1.40±0.38) were only found in PDE/ATP between the moderate injured group, the severe injured group and the control group, the mild injured group. No significant difference was found in other ratios of relative quantification of phosphorus metabolites.CONCLUSION: ^31p MRS is a useful method to evaluate early acute hepatic radiation injury. The relative quantification of hepatic ATP levels, which can reflect the pathological severity of acute hepatic radiation injury, is correlated with LDS.展开更多
Summary: Relationship between ATP changes of rabbit blood and postmortem interval (PMI) was studied. Twenty-four healthy rabbits were sacrificed and randomly divided into 3 groups with 8 rab- bits of each group. Th...Summary: Relationship between ATP changes of rabbit blood and postmortem interval (PMI) was studied. Twenty-four healthy rabbits were sacrificed and randomly divided into 3 groups with 8 rab- bits of each group. The bodies of three groups were placed in calorstat at temperature of 15℃, 25℃ and 35℃, respectively. The blood from the right ventricle was sampled through indwelling needle each 4 h until 72 h after death. ATP levels in the blood samples were measured by using ATP fluo- rescence rapid detection technique at different PMIs. Blood ATP levels slightly increased in the early stage after death and then constantly declined at all temperatures (15℃, 25℃, and 35℃). Cubic polynomial regression equations with log[ATP] as dependent variable (y) and PMI as independent variable (x) at different temperatures and the optimal time period were established as followed: Under 15℃ and during 16-64 h after death, y=-3.027×10^-5x^3+0.003x^2-0.096x-10.625 (Ra^2=0.992, P〈0.001); under 25℃ and during 8-56 h after death, y=-2.921×10^-5x^3+0.002x^2- 0.059x-11.186 (Ra^2=0.989, P〈0.001); under 35℃ and during 4-36 h after death, y=-9.769×10^-5x^3+ 0.005x^2 -0.117x-11.166 (Ra^2=0.991, P〈0.001). The changes in ATP levels in blood collected from right ven- tricle of rabbit cadavers showed relatively stable and regular degradation within 72 h after death at different temperatures.展开更多
基金Supported by National Natural Science Foundation of China,No.81960877University Innovation Fund of Gansu Province,No.2021A-076+4 种基金Gansu Province Science and Technology Plan(Innovation Base and Talent Plan),No.21JR7RA561Natural Science Foundation of Gansu Province,No.21JR1RA267 and No.22JR5RA582Education Technology Innovation Project of Gansu Province,No.2022A-067Innovation Fund of Higher Education of Gansu Province,No.2023A-088Gansu Province Science and Technology Plan International Cooperation Field Project,No.23YFWA0005.
文摘Adenosine triphosphate(ATP)induced cell death(AICD)is a critical cellular process that has garnered substantial scientific interest for its profound relevance to cancer biology and to therapeutic interventions.This comprehensive review unveils the intricate web of AICD mechanisms and their intricate connections with cancer biology.This review offers a comprehensive framework for comprehending the multifaceted role of AICD in the context of cancer.This is achieved by elucidating the dynamic interplay between systemic and cellular ATP homeostasis,deciphering the intricate mechanisms governing AICD,elucidating its intricate involvement in cancer signaling pathways,and scrutinizing validated key genes.Moreover,the exploration of AICD as a potential avenue for cancer treatment underscores its essential role in shaping the future landscape of cancer therapeutics.
基金supported by the National Natural Science Foundation of China,No.81371346,81271376
文摘After hypoxia, ischemia, or inflammatory injuries to the central nervous system, the damaged cells release a large amount of adenosine triphosphate, which may cause secondary neuronal death. Autophagy is a form of cell death that also has neuroprotective effects. Cell Counting Kit assay, monodansylcadaverine staining, flow cytometry, western blotting, and real-time PCR were used to determine the effects of exogenous adenosine triphosphate treatment at different concentrations (2, 4, 6, 8, 10 mmol/L) over time (1, 2, 3, and 6 hours) on the apoptosis and autophagy of SH-SY5Y cells. High concentrations of extracellular adenosine triphosphate induced autophagy and apoptosis of SH-SYSY cells. The enhanced autophagy first appeared, and peaked at 1 hour after treatment with adenosine triphosphate. Cell apoptosis peaked at 3 hours, and persisted through 6 hours. With prolonged exposure to the adenosine triphosphate treatment, the fraction of apoptotic cells increased. These data suggest that the SH-SY5Y neural cells initiated autophagy against apoptosis within an hour of adenosine triphosphate treatment to protect themselves against injury.
基金Supported by the Science and Technology Development Project of Hebei Province, No. 032761192
文摘AIM: To study the growth inhibitory effects of ATP on TE-13 human squamous esophageal carcinoma cellsin vitro.METHODS: NTT assay was used to determine the inhibition of proliferation of ATP or adenosine (ADO) on TE-13 cell line. The morphological changes of TE-13 cells induced by ATP or ADO were observed under fluorescence light microscope by acridine orange (AO)/ethidium bromide (EB) double stained cells. The intemudeosomal fragmentation of genomic DNA was detected by agarose gel electrophoresis. The apoptotic rate and cell cycle after treatment with ATP or ADO were determined by flow cytometry.RESULTS: ATP and ADO produced inhibitory effects on TE-13 cells at the concentration between 0.01 and 1.0 mmol/L. The ICs0 of TE-13 cells exposed to ATP or ADO for 48 and 72 h was 0.71 or 1.05, and 0.21 or 0.19 mmol/L, respectively. The distribution of cell cycle phase and proliferation index (PI) value of TE-13 cells changed, when being exposed to ATP or ADO at the concentrations of 0.01, 0.1, and 1 mmol/L for 48 h. ATP and ADO inhibited the cell proliferation by changing the distribution of cell cycle phase via either G0/G1 phase (ATP or ADO, 1 mmol/L) or S phase (ATP, 0.1 mmol/L) arrest. Under light microscope, the tumor cells exposed to 0.3 mmol/L ATP or ADO displayed morphological changes of apoptosis. A ladder-like pattern of DNA fragmentation was obtained from TE-13 cells treated with 0.1-1 mmol/L ATP or ADO in agarose gel electrophoresis. ATP and ADO induced apoptosis of TE-13 cells in a dose-dependent manner at the concentration between 0.03 and 1 mmol/L. The maximum apoptotic rate of TE-13 cells exposed to ATP or ADO for 48 h was 16.63% or 16.9%, respectively.CONCLUSION: ATP and ADO inhibit cell proliferation, arrest cell cycle, and induce apoptosis of TE-13 cell line.
文摘AIM:To clarify the protective effect of exogenous adenosine triphosphate(ATP)on hypothermically preserved rat livers. METHODS:Establishment of continuous hypothermic machine perfusion model,detection of nucleotides in hepatocytes with HPLC,measurement of activities of LDH and AST in the perfusate,observation of histopathological changes in different experiment groups,and autoradiography were carried out to reveal the underlying mechanism of the protective effect of ATP. RESULTS:The intracellular levels of ATP and EC decreased rapidly after hypothermic preservation in control group,while a higher ATP and EC level,and a slower decreasing rate were observed when ATP-MgCl_2 was added to the perfusate (P<0.01).As compared with the control group,the activities of LDH and AST in the ATP-MgCl_2 group were lower(P<0.05). Furthermore,more severe hepatocyte damage and neutrophil infiltration were observed in the control group.Radioactive [α-^(32)P]ATP entered the hypothermically preserved rat hepatocytes. CONCLUSION:Exogenous ATP has a protective effect on rat livers during hypothermical preservation.However,Mg^(2+) is indispensable,addition of ATP alone produces no protective effect.The underlying mechanism may be that exogenous ATP enters the hypothermically preserved rat liver cells.
文摘The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord injury, rat models of spinal cord injury were established by modified Allen's stall method and interfered for 7 days by intraperitoneal administration of mTOR activator adenosine triphosphate and mTOR kinase inhibitor rapamycin. At 1-4 weeks after spinal cord injury induction, the Basso, Beattie and Bresnahan locomotor rating scale was used to evaluate rat locomotor function, and immunohistochemical staining and western blot analysis were used to detect the expression of nestin (neural stem cell marker), neuronal nuclei (neuronal marker), neuron specific enolase, neurofilament protein 200 (axonal marker), glial fibrillary acidic protein (astrocyte marker), Akt, mTOR and signal transduction and activator of transcription 3 (STAT3). Results showed that adenosine triphosphate-mediated Akt/mTOR/STAT3 pathway increased endogenous neural stem cells, induced neurogenesis and axonal growth, inhibited excessive astrogliosis and improved the locomotor function of rats with spinal cord injury.
基金The National Natural Science Foundation of China(Grant No.21576134,Grant No.21606127,Grant No.21390200,Grant No.21706126)the National Key Research and Development Program of China(Grant No.2016YFA0204300)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions。
文摘In this study,we aimed at developing an efficient biocatalytic process for bio-production of cyclic adenosine monophosphate(c AMP)from adenosine triphosphate(ATP).First,adenylate cyclase from Escherichia coli MG1655(EAC)and Bordetella Pertussis(BAC)were expressed in E.coli BL21(DE3)and comparatively analyzed for their activities.As a result,EAC from E.coli MG1655 exhibited a higher activity.However,amount of EAC were obtained in an insoluble form.Therefore,we expressed the first 446 amino acids of EAC(EAC446)to avoid the inclusion body.The effects of induction temperature,incubation time,and incubation p H were further evaluated to improve the expression of EAC446.Subsequently,the reaction process for the production of c AMP with ATP as a starting material was investigated.As none of c AMP was detected in the whole-cell based biocatalytic process,the reaction catalyzed by the crude enzyme was determined for c AMP production.What's more,the reaction temperature,reaction p H,metal ion additives and substrate concentration was optimized,and the maximum c AMP production of 18.45 g·L^-1was achieved with a yield of 95.4%after bioconversion of 6 h.
文摘Nicotinamide adenine dinucleotide (NAD) oscillation was observed when the isolated mitochondria were immersed in a pyruvate solution. In addition, when an adenosine diphosphate (ADP) was added to the mitochondrial suspension containing pyruvate, adenosine triphosphate (ATP) oscillation was observed as well as NADH oscillation. At this time, the pH within mitochondria also oscillated. It was found that the oscillatory reaction of NADH caused by the membrane permeation of pyruvate continues, causing the oscillation of NADH and H+ in the subsequent reactions. The pH oscillation led to the ATP oscillation. It is considered that the oscillatory reaction caused by the gradual entry of pyruvate into mitochondria was thought to be carried over to both the citric acid cycle and the respiratory chain, ultimately leading to the ATP oscillation in oxidative phosphorylation. Similarly, it was found that membrane permeation of malate causes the gradual occurrence of NADH, at which point NADH oscillates, followed by an oscillatory reaction of the respiratory chain, and finally ATP oscillation. It was found that the oscillations of NADH and ATP occur without going through the citric acid cycle. Oscillations of NADH and other intermediates in both the citric acid cycle and respiratory chain were also confirmed by experiments using semipermeable membranes. These results support our hypothesis that the gradual entry of the substrate by membrane permeation triggers an oscillatory reaction of the enzyme, which is also carried over to subsequent reactions.
基金supported by the National Key Research and Development Program of China(2022YFA1207600)National Natural Science Foundation of China(51972315,21873110,52272052,61720106014)project ZR2023QE322 supported by Shandong Provincial Natural Science Foundation。
文摘There are various strategies to conduct tumor microenvironment(TME)stimulus-responsive(e.g.,acid,H_(2)O_(2)or glutathione)nanoreactors for increasing the efficiency of chemodynamic therapy(CDT).Among these,the exploitation of adenosine triphosphate(ATP,another overexpressed biomarker in TME)-responsive nanoreactors for tumor CDT is still challenging.Herein,the ATP-responsive iron-doped CDs(FeCDs)were firstly prepared and then coassembled with glucose oxidase(GOx)to obtain FeCDs/GOx liposomes as ATP-responsive nanoreactors.Under TME conditions,the nanoreactors initially released FeCDs and GOx.Subsequently,with the existence of ATP,iron ions were rapidly released from the FeCDs to trigger Fenton/Fenton-like reactions for generating·OH.Meanwhile,the T_(1)-weighted magnetic resonance imaging(MRI)was achieved due to the released iron ions.Moreover,the GOx converted endogenous glucose in tumor to gluconic acid and H_(2)O_(2)to satisfy the requirement of·OH generation.In vitro as well as in vivo experiments illustrated that the obtained ATP-responsive CD nanoreactors could be used as a versatile nanotheranostics for simultaneously T_(1)-weighted MRI-guided tumor CDT.This work presents a new ATP-responsive nanoreactor with selfsupplied H_(2)O_(2)for multifunctional nanotheranostic applications.
基金The National Key R&D Program of China:Biological Mechanisms of Acupoint Function-Effect Associations(No.2019YFC1709003)National Natural Science Foundation of China(NSFC)Top-level Project:Study on the Neuroimmunological Mechanism of Macrophage Phenotypic Polarisation for Antiinflammation Regulated by Acupuncture(No.81873369)+1 种基金National Natural Science Foundation of China Young Science Fund Project:Study on the Neuromodulation Mechanism of Electroacupuncture to Improve Neutropenia after Chemotherapy for Lung Cancer(No.81704146)National Natural Science Foundation of China Key Project:Research on the Initial Kinetic Regulation Mechanism of Acupuncture Effect Based on the Physicochemical Coupling Network of Acupuncture Point Microenvironment(No.82030125)。
文摘OBJECTIVE:To investigate the mechanisms behind the effects of acupuncture in Traditional Chinese Medicine,we delved into the adenosine triphosphate/peripheral purinergic P2X receptor 3(ATP/P2X3)receptor signaling system as an indicator of the body's energy state,commonly referred to as"Qi".METHODS:The tail-flick test was utilized to explore the impact of acupuncture on pain tolerance threshold(PTT)in mice,while also assessing adenosine(ADO)levels and adenylate energy charge(EC)at Zusanli(ST36).The study further investigated the dose-dependent effects of acupuncture on PTT and ADO levels at Zusanli(ST36).To shed light on the underlying mechanisms of acupuncture's effects,the study examined the impact of ATP,a P2X3 receptor antagonist,and adenosine disodium on PTT following acupuncture administration.RESULTS:Acupuncture at Zusanli(ST36)led to significant improvements in PTT in mice,with the most effective interventions being twirling for 2 min and needle retention for 28 min.These interventions also resulted in significant increases in ATP levels.The effects of acupuncture were further augmented by administration of different doses of ATP at Zusanli(ST36),and pretreatment with a P2X3 receptor antagonist decreased PTT.Adenylate EC peaked at 30 min after intraperitoneal injection of ATP,and pretreatment with various doses of i.p.ATP 30 min prior to acupuncture increased PTT in a dose-dependent manner.Additionally,pretreatment with an i.p.or intramuscular injection of adenosine disodium enhanced the effects of acupuncture.CONCLUSION:This research provides compelling evidence that ATP is involved in the regulation of PTT through acupuncture,revealing new avenues for achieving enhanced clinical outcomes.
基金The study was supported by grants from the National Natural Science Foundation of China (No. 30470617 and No. 30570618).
文摘Background Repetitive transcranial magnetic stimulation (rTMS) research has mainly been focused on the therapeutic effect of psychiatric disorders and Parkinson's disease. A few studies have shown that rTMS might protect against delayed neuronal death induced by transient ischemia, enhance long-term potentiation in ischemic conditions and affect regional brain blood flow and metabolism. The aim of this study was to determine the effects of repetitive transcranial magnetic stimulation (rTMS) on adenosine triphosphate (ATP) content and microtubule associated protein-2 (MAP-2) expression in rat brain after middle cerebral artery occlusion (MCAO)/reperfusion. Methods To study the effects of different timecourses of rTMS on ATP content and MAP-2 expression, 90 rats were randomly divided into three groups (30 rats in each group). To study the effects of multiple rTMS parameters on ATP content and MAP-2 expression, the rats in each group were further divided into six subgroups (five rats each). The rats were sacrificed at 1-hour, 24-hour and 48-hour intervals after reperfusion, and the brain tissues were collected for the detection of ATP and MAP-2. Results rTMS could significantly increase ATP content and MAP-2 expression in the left brain following ischemic insult (P 〈0.01) and different rTMS parameters had different effects on the ATP level and the MAP-2 expression in the left striatum. A high-frequency rTMS played an important role in MAP-2 expression and ATP preservation. Conclusions This study revealed that rTMS induced significant increase of ATP content and MAP-2 expression in the injured area of the brain, suggesting that the regulation of both ATP and MAP-2 may be involved in the biological mechanism of the effect of rTMS on neural recovery. Therefore, rTMS may become a potential adjunctive therapy for ischemic cerebrovascular disease.
基金National Natural Science Foundation of China(P2Y Receptors in Acupoints Involved in the Analgesic Effects of Laser Acupuncture(No.81102635)Efficacy and Neurobiological Mechanisms of Traditional MoxibustionBased Laser Moxibustion with Specific Wavelength on Inflammatory Pain(No.81320108028))+2 种基金The National Basic Research Program of China(973 programs,Basic Research on Trigger Signals in Acupoints and Specific Modulation of Correlated Target Viscera(No.2012CB518502)Biologic Research on Characteristics of Infrared Physics and Mechanisms in Moxibustion,(No.2015CB554505))The Project of State Administration of Traditional Chinese Medicine of China(Acupuncture,No.ZYSNXD-CC-ZDXK-07)
文摘OBJECTIVE:To investigate the role of adenosine triphosphate(ATP) purinergic signaling in mast cells(MCs) modulated by heat to further understand the molecular mechanisms of moxibustion.METHODS:Skin temperatures induced by monkshood cake moxibustion were evaluated by measuring the Neiguan acupoint(PC 6) from 31 participants with a digital thermocouple thermometer.Temperatures of 43 ℃ and 52 ℃ were applied to cultured human leukemia mast cell line HMC-1 in vitro.Calcium fluorescence was applied to detect intracellular Ca^(2+)([Ca^(2+)]_i).Extracellular ATP contents were measured by luciferin-luciferase assay.RESULTS:Maximum skin temperatures mostly ranged from 40-45 ℃,but some reached up to50 ℃.Both 43 ℃,and 52 ℃ induced MC degranulation,which was accompanied by an increase in[Ca^(2+)]_i and ATP release.Complexing extracellular Ca^(2+) with 5 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid(EGTA) inhibited the noxious heat-induced elevation of[Ca^(2+)]_i and prevented the enhanced ATP secretion by those cells at 52℃ but not 43 ℃.CONCLUSION:Monkshood cake moxibustion can generate heat sufficient to trigger cellular events of MCs,including degranulation,[Ca^(2+)]_i elevation,and ATP release,suggesting that purinergic signals originating from MCs are possibly the initiating response of acupoints to moxibustion.
基金the National Natural Science Foundation of China(Nos.21701015,61975214,21811530054,61671435)Beijing Natural Science Foundation(No.4202075)the National Key R&D Program(No.2018YFC0115500)。
文摘In this work,polymethacrylic acid(PMAA)-templated silver nanoclusters(Ag NCs)were developed as the fluorescent probe for the efficient and sensitive detection of adenosine triphosphate(ATP)in a wide range of pH values.The fluorescence intensity of the Ag NCs could keep stable with pH values ranging from2.5 to 9.3.The detection of ATP was based on the quenching of the fluorescent Ag NCs in the presence of ATP.The fluorescence quenching of the Ag NCs with increasing ATP concentration was studied at pH 2.5,4.5,7.0 and 8.5 which involved a wide pH environment in body fluids.The limit of detection(LOD)for ATP was as low as 0.1 mmol/L in an acidic environment with pH of 2.5 and all the linear correlation coefficients were satisfactory under wide-span pH values from 2.5 to 8.5.In addition,the sensitive determination of ATP was also achieved by adding copper ions(Cu^2+).The high selectivity and rapid detection process proved that the fluorescent probe had great potential to detect ATP in biological samples under different pH conditions.
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of China(nos.21735002,21575037,21778016,21675046,and 21877030).
文摘Transmembrane transport plays an important role in many physiological functions,and mimicking this biological process in artificial systems has potential applications in biosensing,drug delivery,and bionic science.Here,a lipophilic split aptamer was developed as a novel transmembrane carrier for adenosine triphosphate(ATP)transport.The ATP carrier comprises two split aptamer fragments and cholesterol tags,with the split aptamers acting as targetrecognition domains to enhance their specific binding capability and the cholesterol tags as hydrophobic domains to facilitate membrane penetration.Giant unilamellar vesicle experiments demonstrated that the ATP carrier-mediated transmembrane transport was concentration-and time-dependent and showed high transport selectivity.Moreover,the artificial carriers were applicable to living cells and facilitated rapid cell internalization of fluorescencelabeled ATP.Furthermore,carrier-mediated ATP transport into ATP-deficient cells enabled recovery of cellular ATP levels and improved cell viability.This study demonstrated the efficacy of an aptamer nanostructure for designing DNA-based synthetic carriers with high selectivity and flexibility.
基金supported by the National Natural Science Foundation of China,No.81273926,81573742the Natural Science Foundation of Zhejiang Province of China,No.LY15H290006
文摘The activation of adenosine A1 receptors is important for protecting against ischemic brain injury and pretreatment with electroacupuncture has been shown to mitigate ischemic brain insult. The aim of this study was to test whether the adenosine A1 receptor mediates electroacupuncture pretreatment-induced neuroprotection against ischemic brain injury. We first performed 30 minutes of electroacupuncture pretreatment at the Baihui acupoint(GV20), delivered with a current of 1 mA, a frequency of 2/15 Hz, and a depth of 1 mm. High-performance liquid chromatography found that adenosine triphosphate and adenosine levels peaked in the cerebral cortex at 15 minutes and 120 minutes after electroacupuncture pretreatment, respectively. We further examined the effect of 15 or 120 minutes electroacupuncture treatment on ischemic brain injury in a rat middle cerebral artery-occlusion model. We found that at 24 hours reperfusion,120 minutes after electroacupuncture pretreatment, but not for 15 minutes, significantly reduced behavioral deficits and infarct volumes. Last, we demonstrated that the protective effect gained by 120 minutes after electroacupuncture treatment before ischemic injury was abolished by pretreatment with the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine(1 mg/kg, intraperitoneally). Our results suggest that pretreatment with electroacupuncture at the Baihui acupoint elicits protection against transient cerebral ischemia via action at adenosine A1 receptors.
基金supported by a grant from PICT2019-N°01665 to HRQ
文摘Traumatic spinal cord injuries interrupt the connection of all axonal projections with their neuronal targets below and above the lesion site. This interruption results in either temporary or permanent alterations in the locomotor, sensory, and autonomic functions. Damage in the spinal tissue prevents the re-growth of severed axons across the lesion and their reconnection with neuronal targets. Therefore, the absence of spontaneous repair leads to sustained impairment in voluntary control of movement below the injury. For decades, axonal regeneration and reconnection have been considered the opitome of spinal cord injury repair with the goal being the repair of the damaged long motor and sensory tracts in a complex process that involves:(1) resealing injured axons;(2) reconstructing the cytoskeletal structure inside axons;(3) re-establishing healthy growth cones;and(4) assembling axonal cargos. These biological processes require an efficient production of adenosine triphosphate, which is affected by mitochondrial dysfunction after spinal cord injury. From a pathological standpoint, during the secondary stage of spinal cord injury, mitochondrial homeostasis is disrupted, mainly in the distal segments of severed axons. This result in a reduction of adenosine triphosphate levels and subsequent inactivation of adenosine triphosphate-dependent ion pumps required for the regulation of ion concentrations and reuptake of neurotransmitters, such as glutamate. The consequences are calcium overload, reactive oxygen species formation, and excitotoxicity. These events are intimately related to the activation of necrotic and apoptotic cell death programs, and further exacerbate the secondary stage of the injury, being a hallmark of spinal cord injury. This is why restoring mitochondrial function during the early stage of secondary injury could represent a potentially effective therapeutic intervention to overcome the motor and sensory failure produced by spinal cord injury. This review discusses the most recent evidence linking mitochondrial dysfunction with axonal regeneration failure in the context of spinal cord injury. It also covers the future of mitochondria-targeted therapeutical approaches, such as antioxidant molecules, removing mitochondrial anchor proteins, and increasing energetic metabolism through creatine treatment. These approaches are intended to enhance functional recovery by promoting axonal regenerationreconnection after spinal cord injury.
文摘AIM: To evaluate the protective effects of preconditioning by α-lipoic acid (LA) in patients undergoing hepatic resection under inflow occlusion of the liver. METHODS: Twenty-four patients undergoing liver resection for various reasons either received 600 mg LA or NaCI 15 min before transection performed under inflow occlusion of the liver. Blood samples and liver wedge biopsy samples were obtained after opening of the abdomen immediately after inflow occlusion of the liver, and 30 min after the end of inflow occlusion of the liver. RESULTS: Serum levels of aspartate transferase and alanine transferase were reduced at all time points in patients who received LA in comparison to those who received NaCL. This was accompanied by reduced histomorphological features of oncosis. We observed TUNEL-positive hepatocytes in the livers of the untreated patients, especially after 30 min of ischemia. LA attenuated this increase of TUNEL-positive hepatocytes. Under preconditioning with LA, ATP content was significantly enhanced after 30 min of ischemia and after 30 min of reperfusion. CONCLUSION: This is the first report on the potential for LA reducing ischemia/reperfusion injury (IRI) of the liver in humans who were undergoing liver surgery. Beside its simple and rapid application, side effects did not occur. LA might therefore represent a new strategy against hepatic IRI in humans.
基金supported by grants of the Administrative Bureau of Chinese Traditional Medicine of Guangdong Province of China,No.2007109the Medical Research Foundation of Guangdong Province of China,No.A20111154
文摘In our previous study, we found that the edible alcohol extract of the root of the medicinal plant Rhodiola crenulata(RCE) improved spatial cognition in a rat model of Alzheimer's disease. Another study from our laboratory showed that RCE enhanced neural cell proliferation in the dentate gyrus of the hippocampus and prevented damage to hippocampal neurons in a rat model of chronic stress-induced depression. However, the mechanisms underlying the neuroprotective effects of RCE are unclear. In the present study, we investigated the anti-apoptotic effect of RCE and its neuroprotective mechanism of action in a rat model of Alzheimer's disease established by intracerebroventricular injection of streptozotocin. The rats were pre-administered RCE at doses of 1.5, 3.0 or 6.0 g/kg for 21 days before model establishment. ATP and cytochrome c oxidase levels were significantly decreased in rats with Alzheimer's disease. Furthermore, neuronal injury was obvious in the hippocampus, with the presence of a large number of apoptotic neurons. In comparison, in rats given RCE pretreatment, ATP and cytochrome c oxidase levels were markedly increased, the number of apoptotic neurons was reduced, and mitochondrial injury was mitigated. The 3.0 g/kg dose of RCE had the optimal effect. These findings suggest that pretreatment with RCE prevents mitochondrial dysfunction and protects hippocampal neurons from apoptosis in rats with Alzheimer's disease.
文摘Aim: To investigate the possible role of manganese in the regulation of mitochondrial aconitase (mACON) activity human prostate carcinoma cell line PC-3 cells. Methods: The mACON enzymatic activities of human prostate carcinoma cell line PC-3 cells were determined using a reduced nicotinamide adenine dinucleotide-coupled assay. Immunoblot and transient gene expression assays were used to study gene expression of the mACON. The putative response element for gene expression was identified using reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays. Results: In vitro study revealed that manganese chloride (MnCI2) treatment for 16 h inhibited the enzymatic activity of mACON, which induced the inhibition of citrate utility and cell proliferation of PC- 3 cells. Although results from transient gene expression assays showed that MnCI2 treatment upregulated gene translation by approximately 5-fold through the iron response element pathway, immunoblot and reporter assays showed that MnCl2 treatments inhibited protein and gene expression of mACON. This effect was reversed by cotreatment with ferric ammonium citrate. Additional reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays suggested that a putative metal response element in the promoter of the mACON gene was involved in the regulation of MnCh on the gene expression of mACON. Conclusion: These findings suggest that manganese acts as an antagonist of iron, disrupting the enzymatic activity and gene expression of mACON and citrate metabolism in the prostate.
基金Supported by The National Natural Science Foundation of China, No. 30770626the Great Transversal Science Foundation of Zhejiang Province, China, No. 491020I20857
文摘AIM: To compare the features of biochemical metabolic changes detected by hepatic phosphorus-31 magnetic resonance spectroscopy (^31p MRS) with the liver damage score (LDS) and pathologic changes in rabbits and to investigate the diagnostic value of ^31p MRS in acute hepatic radiation injury. METHODS: A total of 30 rabbits received different radiation doses (ranging 5-20 Gy) to establish acute hepatic injury models. Blood biochemical tests, ^31p MRS and pathological examinations were carried out 24 h after irradiation. The degree of injury was evaluated according to LD5 and pathology. Ten healthy rabbits served as controls. The MR examination was performed on a 1.5 T imager using a 1H/^31P surface coil by the 2D chemical shift imaging technique. The relative quantities of phosphomonoesters (PME), phosphodiesters (PDE), inorganic phosphate (Pi) and adenosine triphosphate (ATP) were measured. The data were statistically analyzed. RESULTS: (1) Relative quantification of phosphorus metabolites: (a) ATP: there were significant differences (P 〈 0.05) (LDS-groups:control group vs mild group vs moderate group vs severe group, 1.83±0.33 vs 1.55±0.24 vs 1.27±0.09 vs 0.98±0.18; pathological groups: control group vs mild group vs moderate group vs severe group, 1.83±0.33 vs 1.58±0.25 vs 1.32±0.07 vs 1.02±0.18) of ATP relative quantification among control group, mild injured group, moderate injured group, and severe injured group according to both LDS grading and pathological grading, respectively, and it decreased progressively with the increased degree of injury (r = -0.723, P = 0.000). (b) PME and Pi; the relative quantification of PME and Pi decreased significantly in the severe injured group, and the difference between the control group and severe injured group was significant (P 〈 0.05) (PME: 1DS- control group vs LDS-severe group, 0.86±0.23 vs 0.58±0.22, P = 0.031; pathological control group vs pathological severe group, 0.86±0.23 vs 0.60±0.21, P = 0.037; Pi: LDS-control group vs LDS-severe group, 0.74±0.18 vs 0.43±0.14, P = 0.013; pathological control group vs pathological severe group, 0.74±0.18 vs 0.43±0.14, P = 0.005) according to LDS grading and pathological grading, respectively. (c) PDE; there were no significant differences among groups according to LDS grading, and no significant differences between the control group and experimental groups according to pathological grading. (2) The ratio of relative quantification of phosphorus metabolites: significant differences (P 〈 0.05) (LDS- moderate group and LDS-severe group vs LDS-control group and LDS-mild group, 1.94±0.50 and 1.96±0.72 vs 1.43±0.31 and 1.40±0.38) were only found in PDE/ATP between the moderate injured group, the severe injured group and the control group, the mild injured group. No significant difference was found in other ratios of relative quantification of phosphorus metabolites.CONCLUSION: ^31p MRS is a useful method to evaluate early acute hepatic radiation injury. The relative quantification of hepatic ATP levels, which can reflect the pathological severity of acute hepatic radiation injury, is correlated with LDS.
基金supported by the National Natural Science Foundation of China (No. 81072505)
文摘Summary: Relationship between ATP changes of rabbit blood and postmortem interval (PMI) was studied. Twenty-four healthy rabbits were sacrificed and randomly divided into 3 groups with 8 rab- bits of each group. The bodies of three groups were placed in calorstat at temperature of 15℃, 25℃ and 35℃, respectively. The blood from the right ventricle was sampled through indwelling needle each 4 h until 72 h after death. ATP levels in the blood samples were measured by using ATP fluo- rescence rapid detection technique at different PMIs. Blood ATP levels slightly increased in the early stage after death and then constantly declined at all temperatures (15℃, 25℃, and 35℃). Cubic polynomial regression equations with log[ATP] as dependent variable (y) and PMI as independent variable (x) at different temperatures and the optimal time period were established as followed: Under 15℃ and during 16-64 h after death, y=-3.027×10^-5x^3+0.003x^2-0.096x-10.625 (Ra^2=0.992, P〈0.001); under 25℃ and during 8-56 h after death, y=-2.921×10^-5x^3+0.002x^2- 0.059x-11.186 (Ra^2=0.989, P〈0.001); under 35℃ and during 4-36 h after death, y=-9.769×10^-5x^3+ 0.005x^2 -0.117x-11.166 (Ra^2=0.991, P〈0.001). The changes in ATP levels in blood collected from right ven- tricle of rabbit cadavers showed relatively stable and regular degradation within 72 h after death at different temperatures.